Nuprl Lemma : rroot-exists1-ext

i:{2...}. ∀x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} .
  ∃q:{q:ℕ ⟶ ℝ
      (∀n,m:ℕ.  (((r0 ≤ (q n)) ∧ (r0 ≤ (q m))) ∨ (((q n) ≤ r0) ∧ ((q m) ≤ r0))))
      ∧ ((↑isEven(i))  (∀m:ℕ(r0 ≤ (q m))))} 
   lim n→∞.q n^i x


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rleq: x ≤ y rnexp: x^k1 int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} nat: assert: b all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T int-to-real: r(n) rdiv: (x/y) rmul: b rinv: rinv(x) lt_int: i <j btrue: tt it: bfalse: ff ifthenelse: if then else fi  eq_int: (i =z j) accelerate: accelerate(k;f) reg-seq-inv: reg-seq-inv(x) reg-seq-adjust: reg-seq-adjust(n;x) imax: imax(a;b) le_int: i ≤j bnot: ¬bb reg-seq-mul: reg-seq-mul(x;y) int-rdiv: (a)/k1 rsub: y radd: b reg-seq-list-add: reg-seq-list-add(L) cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) bottom: cons: [a b] rminus: -(x) nil: [] experimental: experimental{impliesFunctionality}(possibleextract) pi1: fst(t) subtract: m rroot-exists1 rroot-exists-part1 decidable__or decidable__rless-int-fractions rleq_functionality_wrt_implies any: any x rabs-difference-bound-rleq iff_weakening_equal rleq_functionality rless_transitivity1 rless-implies-rless rless_transitivity2 rless_functionality radd-preserves-rless decidable__lt decidable__equal_int rmul_preserves_rless rless-int rmul_preserves_req req_functionality req_weakening rleq_weakening_rless rleq_weakening rleq_weakening_equal decidable_functionality rless-int-fractions rless-iff4 rless-iff-large-diff sq_stable__rless radd_functionality_wrt_rless1 decidable__int_equal decidable__squash decidable__and decidable__less_than' rmul_functionality_wrt_rless rinv-positive iff_preserves_decidability regular-less-iff decidable__le rless-iff-rpositive rpositive_functionality rpositive-radd2 squash_elim sq_stable_from_decidable rpositive-iff rpositive2_functionality bdd-diff_inversion accelerate-bdd-diff rnonneg-iff imax_lb sq_stable__from_stable stable__from_decidable bdd-diff-equiv le_functionality uall: [x:A]. B[x] so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .
    \mexists{}q:\{q:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}| 
            (\mforall{}n,m:\mBbbN{}.    (((r0  \mleq{}  (q  n))  \mwedge{}  (r0  \mleq{}  (q  m)))  \mvee{}  (((q  n)  \mleq{}  r0)  \mwedge{}  ((q  m)  \mleq{}  r0))))
            \mwedge{}  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (r0  \mleq{}  (q  m))))\} 
      lim  n\mrightarrow{}\minfty{}.q  n\^{}i  =  x



Date html generated: 2020_05_20-PM-00_29_42
Last ObjectModification: 2020_03_19-PM-02_23_57

Theory : reals


Home Index