Nuprl Lemma : rroot-exists1-ext
∀i:{2...}. ∀x:{x:ℝ| (↑isEven(i)) ⇒ (r0 ≤ x)} .
  ∃q:{q:ℕ ⟶ ℝ| 
      (∀n,m:ℕ.  (((r0 ≤ (q n)) ∧ (r0 ≤ (q m))) ∨ (((q n) ≤ r0) ∧ ((q m) ≤ r0))))
      ∧ ((↑isEven(i)) ⇒ (∀m:ℕ. (r0 ≤ (q m))))} 
   lim n→∞.q n^i = x
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y, 
rleq: x ≤ y, 
rnexp: x^k1, 
int-to-real: r(n), 
real: ℝ, 
isEven: isEven(n), 
int_upper: {i...}, 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
int-to-real: r(n), 
rdiv: (x/y), 
rmul: a * b, 
rinv: rinv(x), 
lt_int: i <z j, 
btrue: tt, 
it: ⋅, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
accelerate: accelerate(k;f), 
reg-seq-inv: reg-seq-inv(x), 
reg-seq-adjust: reg-seq-adjust(n;x), 
imax: imax(a;b), 
le_int: i ≤z j, 
bnot: ¬bb, 
reg-seq-mul: reg-seq-mul(x;y), 
int-rdiv: (a)/k1, 
rsub: x - y, 
radd: a + b, 
reg-seq-list-add: reg-seq-list-add(L), 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
bottom: ⊥, 
cons: [a / b], 
rminus: -(x), 
nil: [], 
experimental: experimental{impliesFunctionality}(possibleextract), 
pi1: fst(t), 
subtract: n - m, 
rroot-exists1, 
rroot-exists-part1, 
decidable__or, 
decidable__rless-int-fractions, 
rleq_functionality_wrt_implies, 
any: any x, 
rabs-difference-bound-rleq, 
iff_weakening_equal, 
rleq_functionality, 
rless_transitivity1, 
rless-implies-rless, 
rless_transitivity2, 
rless_functionality, 
radd-preserves-rless, 
decidable__lt, 
decidable__equal_int, 
rmul_preserves_rless, 
rless-int, 
rmul_preserves_req, 
req_functionality, 
req_weakening, 
rleq_weakening_rless, 
rleq_weakening, 
rleq_weakening_equal, 
decidable_functionality, 
rless-int-fractions, 
rless-iff4, 
rless-iff-large-diff, 
sq_stable__rless, 
radd_functionality_wrt_rless1, 
decidable__int_equal, 
decidable__squash, 
decidable__and, 
decidable__less_than', 
rmul_functionality_wrt_rless, 
rinv-positive, 
iff_preserves_decidability, 
regular-less-iff, 
decidable__le, 
rless-iff-rpositive, 
rpositive_functionality, 
rpositive-radd2, 
squash_elim, 
sq_stable_from_decidable, 
rpositive-iff, 
rpositive2_functionality, 
bdd-diff_inversion, 
accelerate-bdd-diff, 
rnonneg-iff, 
imax_lb, 
sq_stable__from_stable, 
stable__from_decidable, 
bdd-diff-equiv, 
le_functionality, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda4, 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .
    \mexists{}q:\{q:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}| 
            (\mforall{}n,m:\mBbbN{}.    (((r0  \mleq{}  (q  n))  \mwedge{}  (r0  \mleq{}  (q  m)))  \mvee{}  (((q  n)  \mleq{}  r0)  \mwedge{}  ((q  m)  \mleq{}  r0))))
            \mwedge{}  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (r0  \mleq{}  (q  m))))\} 
      lim  n\mrightarrow{}\minfty{}.q  n\^{}i  =  x
Date html generated:
2020_05_20-PM-00_29_42
Last ObjectModification:
2020_03_19-PM-02_23_57
Theory : reals
Home
Index