Nuprl Lemma : rroot-exists-part1
∀i:{2...}. ∀x:{x:ℝ| (↑isEven(i)) 
⇒ (r0 ≤ x)} .
  ∃q:ℕ ⟶ ℝ
   (lim n→∞.q n^i = x
   ∧ (∀n,m:ℕ.  (((r0 ≤ (q n)) ∧ (r0 ≤ (q m))) ∨ (((q n) ≤ r0) ∧ ((q m) ≤ r0))))
   ∧ ((↑isEven(i)) 
⇒ (∀m:ℕ. (r0 ≤ (q m)))))
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
int-to-real: r(n)
, 
real: ℝ
, 
isEven: isEven(n)
, 
int_upper: {i...}
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
int_upper: {i...}
, 
real: ℝ
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
or: P ∨ Q
, 
rational-approx: (x within 1/n)
, 
top: Top
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
nat: ℕ
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
sq_stable: SqStable(P)
, 
cand: A c∧ B
, 
subtract: n - m
, 
pi1: fst(t)
, 
converges-to: lim n→∞.x[n] = y
, 
ge: i ≥ j 
Lemmas referenced : 
equal_wf, 
set-value-type, 
real_wf, 
assert_wf, 
isEven_wf, 
rleq_wf, 
int-to-real_wf, 
nat_plus_wf, 
regular-int-seq_wf, 
function-value-type, 
less_than_wf, 
int-value-type, 
value-type_wf, 
exists_wf, 
nat_wf, 
converges-to_wf, 
rnexp_wf, 
upper_subtype_nat, 
false_wf, 
all_wf, 
or_wf, 
set_wf, 
int_upper_wf, 
rational-approx-property, 
mul_nat_plus, 
rabs_wf, 
rsub_wf, 
int-rdiv_wf, 
nat_plus_properties, 
int_upper_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
rdiv_wf, 
rless-int, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
rless_wf, 
mul-associates, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening, 
int-rdiv-req, 
squash_wf, 
true_wf, 
rneq_wf, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__or, 
decidable__rless-int-fractions, 
decidable__le, 
rleq-int-fractions2, 
intformle_wf, 
int_formula_prop_le_lemma, 
isOdd_wf, 
odd-or-even, 
assert_of_bor, 
rabs-difference-bound-rleq, 
mul_preserves_le, 
le_wf, 
radd-preserves-rless, 
rless-int-fractions, 
radd_wf, 
rmul_wf, 
rinv_wf2, 
rneq_functionality, 
rmul-int, 
rneq-int, 
equal-wf-T-base, 
itermSubtract_wf, 
itermAdd_wf, 
rless_transitivity1, 
rless_irreflexivity, 
rless_functionality, 
req_transitivity, 
radd_functionality, 
rmul_functionality, 
rinv_functionality2, 
req_inversion, 
rinv-of-rmul, 
rinv-mul-as-rdiv, 
rdiv_functionality, 
rinv-as-rdiv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
iff_wf, 
subtype_rel_sets, 
near-root_wf, 
zero-mul, 
product-value-type, 
req_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
r-triangle-inequality2, 
rabs-difference-symmetry, 
radd_functionality_wrt_rleq, 
rleq_weakening_rless, 
radd_functionality_wrt_rless2, 
rleq-int-fractions, 
sq_stable__less_than, 
int_term_value_add_lemma, 
radd-rdiv, 
radd-int, 
sq_stable__le, 
intformimplies_wf, 
int_formual_prop_imp_lemma, 
rmul_preserves_rless, 
rmul-rinv, 
rless-implies-rless, 
mul_preserves_lt, 
rless_transitivity2, 
req_functionality, 
decidable__equal_int, 
intformor_wf, 
int_formula_prop_or_lemma, 
rmul_preserves_req, 
req-int, 
exp_wf2, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
rminus_wf, 
itermMinus_wf, 
rabs-rminus, 
rnexp-int, 
exp-zero, 
real_term_value_minus_lemma, 
subtract_wf, 
rsub_functionality_wrt_rleq, 
rsub-rdiv, 
rsub-int, 
rabs-as-rmax, 
rmax_lb, 
rminus-as-rmul, 
rmul-assoc, 
rminus-reverses-rleq, 
square-nonzero, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
add-zero, 
int_term_value_subtract_lemma, 
less-iff-le, 
minus-minus, 
add-swap, 
nat_properties, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
because_Cache, 
hypothesisEquality, 
cutEval, 
introduction, 
dependent_set_memberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
functionEquality, 
setElimination, 
rename, 
natural_numberEquality, 
intEquality, 
dependent_pairFormation, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
applyEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
multiplyEquality, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
baseApply, 
closedConclusion, 
inrFormation, 
productElimination, 
unionElimination, 
equalityTransitivity, 
minusEquality, 
imageElimination, 
instantiate, 
universeEquality, 
inlFormation, 
setEquality, 
promote_hyp, 
addEquality, 
addLevel, 
functionExtensionality, 
dependent_set_memberFormation
Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .
    \mexists{}q:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
      (lim  n\mrightarrow{}\minfty{}.q  n\^{}i  =  x
      \mwedge{}  (\mforall{}n,m:\mBbbN{}.    (((r0  \mleq{}  (q  n))  \mwedge{}  (r0  \mleq{}  (q  m)))  \mvee{}  (((q  n)  \mleq{}  r0)  \mwedge{}  ((q  m)  \mleq{}  r0))))
      \mwedge{}  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (r0  \mleq{}  (q  m)))))
Date html generated:
2019_10_30-AM-07_54_15
Last ObjectModification:
2018_08_27-PM-11_52_17
Theory : reals
Home
Index