Nuprl Lemma : rroot-exists-part1

i:{2...}. ∀x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} .
  ∃q:ℕ ⟶ ℝ
   (lim n→∞.q n^i x
   ∧ (∀n,m:ℕ.  (((r0 ≤ (q n)) ∧ (r0 ≤ (q m))) ∨ (((q n) ≤ r0) ∧ ((q m) ≤ r0))))
   ∧ ((↑isEven(i))  (∀m:ℕ(r0 ≤ (q m)))))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rleq: x ≤ y rnexp: x^k1 int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} nat: assert: b all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_upper: {i...} real: exists: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q subtype_rel: A ⊆B le: A ≤ B false: False not: ¬A or: P ∨ Q rational-approx: (x within 1/n) top: Top int_nzero: -o nequal: a ≠ b ∈  guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) uiff: uiff(P;Q) nat: rless: x < y sq_exists: x:A [B[x]] rdiv: (x/y) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y sq_stable: SqStable(P) cand: c∧ B subtract: m pi1: fst(t) converges-to: lim n→∞.x[n] y ge: i ≥ 
Lemmas referenced :  equal_wf set-value-type real_wf assert_wf isEven_wf rleq_wf int-to-real_wf nat_plus_wf regular-int-seq_wf function-value-type less_than_wf int-value-type value-type_wf exists_wf nat_wf converges-to_wf rnexp_wf upper_subtype_nat false_wf all_wf or_wf set_wf int_upper_wf rational-approx-property mul_nat_plus rabs_wf rsub_wf int-rdiv_wf nat_plus_properties int_upper_properties full-omega-unsat intformand_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base nequal_wf rdiv_wf rless-int decidable__lt intformnot_wf int_formula_prop_not_lemma rless_wf mul-associates rleq_functionality rabs_functionality rsub_functionality req_weakening int-rdiv-req squash_wf true_wf rneq_wf subtype_rel_self iff_weakening_equal decidable__or decidable__rless-int-fractions decidable__le rleq-int-fractions2 intformle_wf int_formula_prop_le_lemma isOdd_wf odd-or-even assert_of_bor rabs-difference-bound-rleq mul_preserves_le le_wf radd-preserves-rless rless-int-fractions radd_wf rmul_wf rinv_wf2 rneq_functionality rmul-int rneq-int equal-wf-T-base itermSubtract_wf itermAdd_wf rless_transitivity1 rless_irreflexivity rless_functionality req_transitivity radd_functionality rmul_functionality rinv_functionality2 req_inversion rinv-of-rmul rinv-mul-as-rdiv rdiv_functionality rinv-as-rdiv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma iff_wf subtype_rel_sets near-root_wf zero-mul product-value-type req_wf rleq_functionality_wrt_implies rleq_weakening_equal r-triangle-inequality2 rabs-difference-symmetry radd_functionality_wrt_rleq rleq_weakening_rless radd_functionality_wrt_rless2 rleq-int-fractions sq_stable__less_than int_term_value_add_lemma radd-rdiv radd-int sq_stable__le intformimplies_wf int_formual_prop_imp_lemma rmul_preserves_rless rmul-rinv rless-implies-rless mul_preserves_lt rless_transitivity2 req_functionality decidable__equal_int intformor_wf int_formula_prop_or_lemma rmul_preserves_req req-int exp_wf2 not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel rminus_wf itermMinus_wf rabs-rminus rnexp-int exp-zero real_term_value_minus_lemma subtract_wf rsub_functionality_wrt_rleq rsub-rdiv rsub-int rabs-as-rmax rmax_lb rminus-as-rmul rmul-assoc rminus-reverses-rleq square-nonzero condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero int_term_value_subtract_lemma less-iff-le minus-minus add-swap nat_properties rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut because_Cache hypothesisEquality cutEval introduction dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule hypothesis lambdaEquality independent_isectElimination functionEquality setElimination rename natural_numberEquality intEquality dependent_pairFormation independent_pairFormation imageMemberEquality baseClosed equalitySymmetry hyp_replacement applyLambdaEquality productEquality applyEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality multiplyEquality approximateComputation independent_functionElimination int_eqEquality baseApply closedConclusion inrFormation productElimination unionElimination equalityTransitivity minusEquality imageElimination instantiate universeEquality inlFormation setEquality promote_hyp addEquality addLevel functionExtensionality dependent_set_memberFormation

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .
    \mexists{}q:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
      (lim  n\mrightarrow{}\minfty{}.q  n\^{}i  =  x
      \mwedge{}  (\mforall{}n,m:\mBbbN{}.    (((r0  \mleq{}  (q  n))  \mwedge{}  (r0  \mleq{}  (q  m)))  \mvee{}  (((q  n)  \mleq{}  r0)  \mwedge{}  ((q  m)  \mleq{}  r0))))
      \mwedge{}  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (r0  \mleq{}  (q  m)))))



Date html generated: 2019_10_30-AM-07_54_15
Last ObjectModification: 2018_08_27-PM-11_52_17

Theory : reals


Home Index