Nuprl Lemma : decidable__rless-int-fractions

a,b:ℤ. ∀c,d:ℕ+.  Dec((r(a)/r(c)) < (r(b)/r(d)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y int-to-real: r(n) nat_plus: + decidable: Dec(P) all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop:
Lemmas referenced :  nat_plus_wf rless-int-fractions less_than_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf rless_wf decidable_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename independent_isectElimination sqequalRule inrFormation dependent_functionElimination because_Cache productElimination independent_functionElimination natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll multiplyEquality

Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}c,d:\mBbbN{}\msupplus{}.    Dec((r(a)/r(c))  <  (r(b)/r(d)))



Date html generated: 2016_05_18-AM-07_27_39
Last ObjectModification: 2016_01_17-AM-01_58_11

Theory : reals


Home Index