Nuprl Lemma : rpositive-radd2

x,y:ℝ.  (rpositive(x)  rnonneg(y)  rpositive(x y))


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) rpositive: rpositive(x) radd: b real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q radd: b member: t ∈ T uall: [x:A]. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: subtype_rel: A ⊆B top: Top iff: ⇐⇒ Q rev_implies:  Q real: uimplies: supposing a guard: {T} rnonneg2: rnonneg2(x) rpositive2: rpositive2(x) exists: x:A. B[x] uiff: uiff(P;Q) cand: c∧ B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A nat: le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] int_upper: {i...} subtract: m gt: i > j
Lemmas referenced :  pos_mul_arg_bounds le-add-cancel add_functionality_wrt_le add-zero mul-distributes-right minus-add zero-add zero-mul mul-swap mul-commutes mul-associates mul-distributes add-swap minus-one-mul-top add-commutes minus-one-mul add-associates condition-implies-le less-iff-le not-lt-2 imax_ub int_term_value_add_lemma itermAdd_wf multiply-is-int-iff decidable__lt all_wf imax_wf le_wf false_wf mul_preserves_le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties imax_lb imax_nat_plus rpositive_wf rnonneg_wf radd_wf rnonneg-iff rpositive-iff rnonneg2_wf mul_nat_plus l_sum_nil_lemma l_sum_cons_lemma map_nil_lemma map_cons_lemma iff_weakening_equal reg-seq-list-add-as-l_sum true_wf squash_wf rpositive2_wf accelerate-bdd-diff length_wf regular-int-seq_wf nat_plus_wf length_of_nil_lemma length_of_cons_lemma nil_wf real_wf cons_wf reg-seq-list-add_wf less_than_wf accelerate_wf rpositive2_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction imageMemberEquality hypothesisEquality baseClosed hypothesis because_Cache applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality setEquality functionEquality intEquality setElimination rename independent_functionElimination productElimination imageElimination equalityTransitivity equalitySymmetry universeEquality independent_isectElimination addLevel impliesFunctionality dependent_pairFormation multiplyEquality unionElimination int_eqEquality computeAll addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion minusEquality inlFormation

Latex:
\mforall{}x,y:\mBbbR{}.    (rpositive(x)  {}\mRightarrow{}  rnonneg(y)  {}\mRightarrow{}  rpositive(x  +  y))



Date html generated: 2016_05_18-AM-07_02_11
Last ObjectModification: 2016_01_17-AM-01_52_28

Theory : reals


Home Index