Nuprl Lemma : rroot_wf

[i:{2...}]. ∀[x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} ].  (rroot(i;x) ∈ {y:ℝ((↑isEven(i))  (r0 ≤ y)) ∧ (y^i x)} )


Proof




Definitions occuring in Statement :  rroot: rroot(i;x) rleq: x ≤ y rnexp: x^k1 req: y int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} assert: b uall: [x:A]. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rroot: rroot(i;x) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  assert: b bfalse: ff subtype_rel: A ⊆B int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_uimplies: rev_uimplies(P;Q) cand: c∧ B true: True nat: decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  guard: {T} int-to-real: r(n) nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B top: Top sq_type: SQType(T) bnot: ¬bb bor: p ∨bq real: bdd-diff: bdd-diff(f;g) rroot-abs: rroot-abs(i;x) rminus: -(x) rroot-odd: rroot-odd(i;x) has-value: (a)↓ absval: |i| subtract: m int_seg: {i..j-} lelt: i ≤ j < k req: y rless: x < y sq_exists: x:A [B[x]] accelerate: accelerate(k;f) nequal: a ≠ b ∈  int_nzero: -o sq_stable: SqStable(P)

Latex:
\mforall{}[i:\{2...\}].  \mforall{}[x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  ].
    (rroot(i;x)  \mmember{}  \{y:\mBbbR{}|  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  y))  \mwedge{}  (y\^{}i  =  x)\}  )



Date html generated: 2020_05_20-PM-00_31_20
Last ObjectModification: 2020_01_03-PM-06_51_56

Theory : reals


Home Index