Step
*
of Lemma
rsum-zero-req
∀[n,m:ℤ]. ∀[f:{n..m + 1-} ⟶ ℝ]. Σ{f[k] | n≤k≤m} = r0 supposing ∀k:{n..m + 1-}. (f[k] = r0)
BY
{ ((InstLemma `rsum-zero` [] THEN RepeatFor 2 (ParallelLast')) THEN Auto) }
1
1. n : ℤ
2. m : ℤ
3. Σ{r0 | n≤k≤m} = r0
4. f : {n..m + 1-} ⟶ ℝ
5. ∀k:{n..m + 1-}. (f[k] = r0)
⊢ Σ{f[k] | n≤k≤m} = r0
Latex:
Latex:
\mforall{}[n,m:\mBbbZ{}]. \mforall{}[f:\{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}]. \mSigma{}\{f[k] | n\mleq{}k\mleq{}m\} = r0 supposing \mforall{}k:\{n..m + 1\msupminus{}\}. (f[k] = r0)
By
Latex:
((InstLemma `rsum-zero` [] THEN RepeatFor 2 (ParallelLast')) THEN Auto)
Home
Index