Nuprl Lemma : rsum-zero-req
∀[n,m:ℤ]. ∀[f:{n..m + 1-} ⟶ ℝ].  Σ{f[k] | n≤k≤m} = r0 supposing ∀k:{n..m + 1-}. (f[k] = r0)
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rsum-zero, 
req_witness, 
rsum_wf, 
int_seg_wf, 
int-to-real_wf, 
all_wf, 
req_wf, 
real_wf, 
rsum_functionality, 
le_wf, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
req_transitivity
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
addEquality, 
natural_numberEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
independent_isectElimination, 
lambdaFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    \mSigma{}\{f[k]  |  n\mleq{}k\mleq{}m\}  =  r0  supposing  \mforall{}k:\{n..m  +  1\msupminus{}\}.  (f[k]  =  r0)
Date html generated:
2016_10_26-AM-09_16_54
Last ObjectModification:
2016_10_10-PM-01_24_23
Theory : reals
Home
Index