Nuprl Lemma : rv-be-dist

[n:ℕ]. ∀[a,b,c:ℝ^n].  (a_b_c  (d(a;c) (d(a;b) d(b;c))))


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec-dist: d(x;y) real-vec: ^n req: y radd: b nat: uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  cand: c∧ B rv-be: a_b_c not: ¬A rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B prop: all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-between_wf not_wf real-vec-sep_wf rv-T-iff nat_wf real-vec_wf radd_wf int-to-real_wf rleq_wf real_wf real-vec-dist_wf req_witness rv-be_wf rv-T-dist
Rules used in proof :  productEquality independent_pairFormation productElimination isect_memberEquality because_Cache natural_numberEquality setEquality rename setElimination applyEquality lambdaEquality sqequalRule isectElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (a\_b\_c  {}\mRightarrow{}  (d(a;c)  =  (d(a;b)  +  d(b;c))))



Date html generated: 2016_10_28-AM-07_38_13
Last ObjectModification: 2016_10_27-PM-02_10_16

Theory : reals


Home Index