Nuprl Lemma : rv-T-iff

n:ℕ. ∀a,b,c:ℝ^n.  (rv-T(n;a;b;c) ⇐⇒ ¬(a ≠ b ∧ b ≠ c ∧ a-b-c)))


Proof




Definitions occuring in Statement :  rv-T: rv-T(n;a;b;c) rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q
Definitions unfolded in proof :  rv-T: rv-T(n;a;b;c) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q or: P ∨ Q uiff: uiff(P;Q) uimplies: supposing a cand: c∧ B rv-between: a-b-c
Lemmas referenced :  real-vec-sep_wf not_wf rv-between_wf real-vec-be_wf real-vec_wf nat_wf false_wf or_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rv-non-strict-between-iff not-real-vec-sep-iff-eq real-vec-sep_functionality req-vec_weakening rv-between_functionality real-vec-sep-symmetry
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation cut thin sqequalHypSubstitution productElimination hypothesis independent_functionElimination voidElimination productEquality introduction extract_by_obid isectElimination hypothesisEquality functionEquality unionElimination dependent_functionElimination because_Cache independent_isectElimination addLevel impliesFunctionality andLevelFunctionality impliesLevelFunctionality levelHypothesis promote_hyp

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-T(n;a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  (\mneg{}a-b-c)))



Date html generated: 2016_10_26-AM-10_45_54
Last ObjectModification: 2016_10_05-PM-00_08_14

Theory : reals


Home Index