Nuprl Lemma : rv-T-iff
∀n:ℕ. ∀a,b,c:ℝ^n.  (rv-T(n;a;b;c) 
⇐⇒ ¬(a ≠ b ∧ b ≠ c ∧ (¬a-b-c)))
Proof
Definitions occuring in Statement : 
rv-T: rv-T(n;a;b;c)
, 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
rv-T: rv-T(n;a;b;c)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
rv-between: a-b-c
Lemmas referenced : 
real-vec-sep_wf, 
not_wf, 
rv-between_wf, 
real-vec-be_wf, 
real-vec_wf, 
nat_wf, 
false_wf, 
or_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rv-non-strict-between-iff, 
not-real-vec-sep-iff-eq, 
real-vec-sep_functionality, 
req-vec_weakening, 
rv-between_functionality, 
real-vec-sep-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
productElimination, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
functionEquality, 
unionElimination, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
addLevel, 
impliesFunctionality, 
andLevelFunctionality, 
impliesLevelFunctionality, 
levelHypothesis, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-T(n;a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  (\mneg{}a-b-c)))
Date html generated:
2016_10_26-AM-10_45_54
Last ObjectModification:
2016_10_05-PM-00_08_14
Theory : reals
Home
Index