Nuprl Lemma : rv-T-dist
∀n:ℕ. ∀a,b,c:ℝ^n.  (rv-T(n;a;b;c) 
⇒ (d(a;c) = (d(a;b) + d(b;c))))
Proof
Definitions occuring in Statement : 
rv-T: rv-T(n;a;b;c)
, 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
req: x = y
, 
radd: a + b
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
squash: ↓T
, 
less_than: a < b
, 
ge: i ≥ j 
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
real-vec-sep: a ≠ b
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
true: True
, 
or: P ∨ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rv-T: rv-T(n;a;b;c)
Lemmas referenced : 
radd-int, 
real-vec-dist-same-zero, 
radd_functionality, 
req-vec_weakening, 
real-vec-dist_functionality, 
not-real-vec-sep-iff-eq, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformless_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
nat_plus_properties, 
req_inversion, 
req_weakening, 
rneq_functionality, 
real-vec-dist-be, 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
true_wf, 
or_wf, 
false_wf, 
nat_wf, 
real-vec_wf, 
not_wf, 
real-vec-be_wf, 
real-vec-sep_wf, 
rneq_wf, 
radd_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
real-vec-dist_wf, 
not-rneq
Rules used in proof : 
promote_hyp, 
addEquality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
imageElimination, 
dependent_functionElimination, 
voidElimination, 
unionElimination, 
independent_functionElimination, 
functionEquality, 
productEquality, 
independent_isectElimination, 
because_Cache, 
natural_numberEquality, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-T(n;a;b;c)  {}\mRightarrow{}  (d(a;c)  =  (d(a;b)  +  d(b;c))))
Date html generated:
2016_10_28-AM-07_29_27
Last ObjectModification:
2016_10_27-PM-00_45_42
Theory : reals
Home
Index