Nuprl Lemma : rv-T-dist

n:ℕ. ∀a,b,c:ℝ^n.  (rv-T(n;a;b;c)  (d(a;c) (d(a;b) d(b;c))))


Proof




Definitions occuring in Statement :  rv-T: rv-T(n;a;b;c) real-vec-dist: d(x;y) real-vec: ^n req: y radd: b nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uiff: uiff(P;Q) top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T less_than: a < b ge: i ≥  nat: nat_plus: + sq_exists: x:{A| B[x]} rless: x < y real-vec-sep: a ≠ b rneq: x ≠ y iff: ⇐⇒ Q false: False true: True or: P ∨ Q not: ¬A uimplies: supposing a prop: subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q implies:  Q all: x:A. B[x] rv-T: rv-T(n;a;b;c)
Lemmas referenced :  radd-int real-vec-dist-same-zero radd_functionality req-vec_weakening real-vec-dist_functionality not-real-vec-sep-iff-eq int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermConstant_wf itermVar_wf itermAdd_wf intformless_wf satisfiable-full-omega-tt nat_properties nat_plus_properties req_inversion req_weakening rneq_functionality real-vec-dist-be minimal-not-not-excluded-middle minimal-double-negation-hyp-elim true_wf or_wf false_wf nat_wf real-vec_wf not_wf real-vec-be_wf real-vec-sep_wf rneq_wf radd_wf int-to-real_wf rleq_wf real_wf real-vec-dist_wf not-rneq
Rules used in proof :  promote_hyp addEquality computeAll voidEquality isect_memberEquality intEquality int_eqEquality dependent_pairFormation imageElimination dependent_functionElimination voidElimination unionElimination independent_functionElimination functionEquality productEquality independent_isectElimination because_Cache natural_numberEquality setEquality rename setElimination lambdaEquality applyEquality hypothesis hypothesisEquality isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-T(n;a;b;c)  {}\mRightarrow{}  (d(a;c)  =  (d(a;b)  +  d(b;c))))



Date html generated: 2016_10_28-AM-07_29_27
Last ObjectModification: 2016_10_27-PM-00_45_42

Theory : reals


Home Index