Step * 1 2 1 of Lemma rv-circle-circle-lemma2


1. {2...}
2. r1 {r:ℝr0 ≤ r} 
3. r2 {r:ℝr0 ≤ r} 
4. : ℝ^n
5. r0 < ||b||
6. b' : ℝ^n
7. b⋅b' r0
8. ||b'|| ||b||
9. (r1^2 r2^2) ||b||^2^2 ≤ (r(4) ||b||^2 r1^2)
10. cc : ℝ
11. ((r1^2 r2^2) ||b||^2) cc ∈ ℝ
12. r0 ≤ ((||b||^2 r1^2) (cc/r(2))^2)
⊢ let (cc/r(2)) in
   let (||b||^2 r1^2) c^2 in
   ∀x:ℝ^n
     ((req-vec(n;x;(r1/||b||^2)*c*b rsqrt(d)*b') ∨ req-vec(n;x;(r1/||b||^2)*c*b rsqrt(d)*b'))
      ((||x|| r1) ∧ (||x b|| r2)))
 (∃u,v:ℝ^n
     (((||u|| r1) ∧ (||u b|| r2))
     ∧ ((||v|| r1) ∧ (||v b|| r2))
     ∧ ((cc^2 < (r(4) ||b||^2 r1^2))  u ≠ v)))
BY
(RepUR ``let`` 0
   THEN (Assert r0 < ||b||^2 BY
               (BLemma `rnexp-positive` THEN Auto))
   THEN (GenConclTerm ⌜rsqrt((||b||^2 r1^2) (cc/r(2))^2)⌝⋅ THENA Auto)) }

1
1. {2...}
2. r1 {r:ℝr0 ≤ r} 
3. r2 {r:ℝr0 ≤ r} 
4. : ℝ^n
5. r0 < ||b||
6. b' : ℝ^n
7. b⋅b' r0
8. ||b'|| ||b||
9. (r1^2 r2^2) ||b||^2^2 ≤ (r(4) ||b||^2 r1^2)
10. cc : ℝ
11. ((r1^2 r2^2) ||b||^2) cc ∈ ℝ
12. r0 ≤ ((||b||^2 r1^2) (cc/r(2))^2)
13. r0 < ||b||^2
14. {r:ℝ(r0 ≤ r) ∧ ((r r) ((||b||^2 r1^2) (cc/r(2))^2))} 
15. rsqrt((||b||^2 r1^2) (cc/r(2))^2) v ∈ {r:ℝ(r0 ≤ r) ∧ ((r r) ((||b||^2 r1^2) (cc/r(2))^2))} 
⊢ (∀x:ℝ^n
     ((req-vec(n;x;(r1/||b||^2)*(cc/r(2))*b v*b') ∨ req-vec(n;x;(r1/||b||^2)*(cc/r(2))*b v*b'))
      ((||x|| r1) ∧ (||x b|| r2))))
 (∃u,v:ℝ^n
     (((||u|| r1) ∧ (||u b|| r2))
     ∧ ((||v|| r1) ∧ (||v b|| r2))
     ∧ ((cc^2 < (r(4) ||b||^2 r1^2))  u ≠ v)))


Latex:


Latex:

1.  n  :  \{2...\}
2.  r1  :  \{r:\mBbbR{}|  r0  \mleq{}  r\} 
3.  r2  :  \{r:\mBbbR{}|  r0  \mleq{}  r\} 
4.  b  :  \mBbbR{}\^{}n
5.  r0  <  ||b||
6.  b'  :  \mBbbR{}\^{}n
7.  b\mcdot{}b'  =  r0
8.  ||b'||  =  ||b||
9.  (r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  \mleq{}  (r(4)  *  ||b||\^{}2  *  r1\^{}2)
10.  cc  :  \mBbbR{}
11.  ((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2)  =  cc
12.  r0  \mleq{}  ((||b||\^{}2  *  r1\^{}2)  -  (cc/r(2))\^{}2)
\mvdash{}  let  c  =  (cc/r(2))  in
      let  d  =  (||b||\^{}2  *  r1\^{}2)  -  c\^{}2  in
      \mforall{}x:\mBbbR{}\^{}n
          ((req-vec(n;x;(r1/||b||\^{}2)*c*b  +  rsqrt(d)*b')  \mvee{}  req-vec(n;x;(r1/||b||\^{}2)*c*b  -  rsqrt(d)*b'))
          {}\mRightarrow{}  ((||x||  =  r1)  \mwedge{}  (||x  -  b||  =  r2)))
{}\mRightarrow{}  (\mexists{}u,v:\mBbbR{}\^{}n
          (((||u||  =  r1)  \mwedge{}  (||u  -  b||  =  r2))
          \mwedge{}  ((||v||  =  r1)  \mwedge{}  (||v  -  b||  =  r2))
          \mwedge{}  ((cc\^{}2  <  (r(4)  *  ||b||\^{}2  *  r1\^{}2))  {}\mRightarrow{}  u  \mneq{}  v)))


By


Latex:
(RepUR  ``let``  0
  THEN  (Assert  r0  <  ||b||\^{}2  BY
                          (BLemma  `rnexp-positive`  THEN  Auto))
  THEN  (GenConclTerm  \mkleeneopen{}rsqrt((||b||\^{}2  *  r1\^{}2)  -  (cc/r(2))\^{}2)\mkleeneclose{}\mcdot{}  THENA  Auto))




Home Index