Nuprl Lemma : rv-congruent_functionality2

n:ℕ. ∀a1,a2,b1,b2,c1,c2,d1,d2:ℝ^n.  ((¬a1 ≠ a2)  b1 ≠ b2)  c1 ≠ c2)  d1 ≠ d2)  (a1b1=c1d1 ⇐⇒ a2b2=c2d2))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop:
Lemmas referenced :  rv-congruent_functionality not-real-vec-sep-iff-eq not_wf real-vec-sep_wf real-vec_wf nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination productElimination independent_isectElimination because_Cache

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,a2,b1,b2,c1,c2,d1,d2:\mBbbR{}\^{}n.
    ((\mneg{}a1  \mneq{}  a2)  {}\mRightarrow{}  (\mneg{}b1  \mneq{}  b2)  {}\mRightarrow{}  (\mneg{}c1  \mneq{}  c2)  {}\mRightarrow{}  (\mneg{}d1  \mneq{}  d2)  {}\mRightarrow{}  (a1b1=c1d1  \mLeftarrow{}{}\mRightarrow{}  a2b2=c2d2))



Date html generated: 2016_10_26-AM-10_30_55
Last ObjectModification: 2016_09_25-PM-01_10_31

Theory : reals


Home Index