Nuprl Lemma : rv-congruent_functionality2
∀n:ℕ. ∀a1,a2,b1,b2,c1,c2,d1,d2:ℝ^n.  ((¬a1 ≠ a2) ⇒ (¬b1 ≠ b2) ⇒ (¬c1 ≠ c2) ⇒ (¬d1 ≠ d2) ⇒ (a1b1=c1d1 ⇐⇒ a2b2=c2d2))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b, 
rv-congruent: ab=cd, 
real-vec: ℝ^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ
Lemmas referenced : 
rv-congruent_functionality, 
not-real-vec-sep-iff-eq, 
not_wf, 
real-vec-sep_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,a2,b1,b2,c1,c2,d1,d2:\mBbbR{}\^{}n.
    ((\mneg{}a1  \mneq{}  a2)  {}\mRightarrow{}  (\mneg{}b1  \mneq{}  b2)  {}\mRightarrow{}  (\mneg{}c1  \mneq{}  c2)  {}\mRightarrow{}  (\mneg{}d1  \mneq{}  d2)  {}\mRightarrow{}  (a1b1=c1d1  \mLeftarrow{}{}\mRightarrow{}  a2b2=c2d2))
Date html generated:
2016_10_26-AM-10_30_55
Last ObjectModification:
2016_09_25-PM-01_10_31
Theory : reals
Home
Index