Nuprl Lemma : rv-pos-angle-implies-separated2

n:ℕ. ∀a,b,c:ℝ^n.  (rv-pos-angle(n;a;b;c)  a ≠ b)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  rv-pos-angle-permute rv-pos-angle-implies-separated rv-pos-angle_wf real-vec_wf nat_wf real-vec-sep-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache isectElimination productElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-pos-angle(n;a;b;c)  {}\mRightarrow{}  a  \mneq{}  b)



Date html generated: 2017_10_03-AM-11_04_46
Last ObjectModification: 2017_03_02-PM-05_11_32

Theory : reals


Home Index