Nuprl Lemma : set-metric-subspace

[X:Type]. ∀[d:metric(X)]. ∀[P:X ⟶ ℙ].  metric-subspace(X;d;{x:X| P[x]} supposing ∀x,y:X.  (P[x]  y ≡  P[y])


Proof




Definitions occuring in Statement :  metric-subspace: metric-subspace(X;d;A) meq: x ≡ y metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a metric-subspace: metric-subspace(X;d;A) and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  strong-subtype-set2 meq_wf strong-subtype_witness subtype_rel_self metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality universeIsType hypothesis lambdaFormation_alt setElimination rename dependent_set_memberEquality_alt because_Cache setIsType productElimination independent_pairEquality setEquality instantiate universeEquality independent_functionElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType functionIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[P:X  {}\mrightarrow{}  \mBbbP{}].    metric-subspace(X;d;\{x:X|  P[x]\}  )  supposing  \mforall{}x,y:X.    (P[x]  \000C{}\mRightarrow{}  y  \mequiv{}  x  {}\mRightarrow{}  P[y])



Date html generated: 2019_10_30-AM-06_31_08
Last ObjectModification: 2019_10_02-AM-10_06_00

Theory : reals


Home Index