Nuprl Lemma : set-metric-subspace
∀[X:Type]. ∀[d:metric(X)]. ∀[P:X ⟶ ℙ].  metric-subspace(X;d;{x:X| P[x]} ) supposing ∀x,y:X.  (P[x] ⇒ y ≡ x ⇒ P[y])
Proof
Definitions occuring in Statement : 
metric-subspace: metric-subspace(X;d;A), 
meq: x ≡ y, 
metric: metric(X), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
metric-subspace: metric-subspace(X;d;A), 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
strong-subtype-set2, 
meq_wf, 
strong-subtype_witness, 
subtype_rel_self, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
hypothesis, 
lambdaFormation_alt, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
because_Cache, 
setIsType, 
productElimination, 
independent_pairEquality, 
setEquality, 
instantiate, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[P:X  {}\mrightarrow{}  \mBbbP{}].    metric-subspace(X;d;\{x:X|  P[x]\}  )  supposing  \mforall{}x,y:X.    (P[x]  \000C{}\mRightarrow{}  y  \mequiv{}  x  {}\mRightarrow{}  P[y])
Date html generated:
2019_10_30-AM-06_31_08
Last ObjectModification:
2019_10_02-AM-10_06_00
Theory : reals
Home
Index