Nuprl Lemma : sq_stable__partitions

I:Interval. ∀p:ℝ List.  (icompact(I)  SqStable(partitions(I;p)))


Proof




Definitions occuring in Statement :  partitions: partitions(I;p) icompact: icompact(I) interval: Interval real: list: List sq_stable: SqStable(P) all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  icompact: icompact(I) so_apply: x[s] so_lambda: λ2x.t[x] bfalse: ff cons: [a b] squash: T less_than: a < b so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] it: nil: [] select: L[n] btrue: tt ifthenelse: if then else fi  assert: b or: P ∨ Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a and: P ∧ Q prop: member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x] partitions: partitions(I;p)
Lemmas referenced :  interval_wf list_wf icompact_wf sq_stable__rleq sq_stable__all sq_stable__frs-non-dec right-endpoint_wf length_of_cons_lemma null_cons_lemma product_subtype_list base_wf stuck-spread length_of_nil_lemma null_nil_lemma list-cases last_wf false_wf select_wf left-endpoint_wf rleq_wf real_wf length_wf less_than_wf frs-non-dec_wf sq_stable__and
Rules used in proof :  lambdaEquality independent_functionElimination hypothesis_subsumption promote_hyp productElimination imageElimination voidEquality voidElimination baseClosed unionElimination dependent_functionElimination independent_pairFormation because_Cache independent_isectElimination productEquality natural_numberEquality functionEquality isect_memberEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}I:Interval.  \mforall{}p:\mBbbR{}  List.    (icompact(I)  {}\mRightarrow{}  SqStable(partitions(I;p)))



Date html generated: 2018_05_22-PM-02_06_15
Last ObjectModification: 2018_05_21-AM-00_18_39

Theory : reals


Home Index