Nuprl Lemma : sq_stable__real-vec-indep

[k:ℕ]. ∀[L:ℝ^k List].  SqStable(real-vec-indep(k;L))


Proof




Definitions occuring in Statement :  real-vec-indep: real-vec-indep(k;L) real-vec: ^n list: List nat: sq_stable: SqStable(P) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) real-vec-indep: real-vec-indep(k;L) all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B
Lemmas referenced :  sq_stable__from_stable real-vec-indep_wf stable__real-vec-indep req_witness int-to-real_wf list_wf real-vec_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule lambdaEquality_alt dependent_functionElimination applyEquality setElimination rename productElimination functionIsTypeImplies inhabitedIsType universeIsType isect_memberEquality_alt because_Cache isectIsTypeImplies

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[L:\mBbbR{}\^{}k  List].    SqStable(real-vec-indep(k;L))



Date html generated: 2019_10_30-AM-08_04_53
Last ObjectModification: 2019_09_17-PM-06_04_41

Theory : reals


Home Index