Nuprl Lemma : stable-union-metric-subspace

[X:Type]. ∀[d:metric(X)]. ∀[T:Type]. ∀[P:T ⟶ X ⟶ ℙ].
  metric-subspace(X;d;stable-union(X;T;i,x.P[i;x])) supposing ∀i:T. ∀x,y:X.  (P[i;x]  y ≡  P[i;y])


Proof




Definitions occuring in Statement :  metric-subspace: metric-subspace(X;d;A) meq: x ≡ y metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} false: False not: ¬A subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] implies:  Q all: x:A. B[x] so_apply: x[s] so_apply: x[s1;s2] exists: x:A. B[x] prop: so_lambda: λ2x.t[x] stable-union: Error :stable-union,  and: P ∧ Q metric-subspace: metric-subspace(X;d;A) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-void istype-universe metric_wf subtype_rel_self strong-subtype_witness Error :stable-union_wf,  meq_wf strong-subtype-self not_wf strong-subtype-set3
Rules used in proof :  voidElimination productIsType dependent_pairFormation_alt promote_hyp dependent_set_memberEquality_alt isectIsTypeImplies isect_memberEquality_alt universeEquality instantiate functionIsType functionIsTypeImplies equalitySymmetry equalityTransitivity axiomEquality dependent_functionElimination independent_functionElimination independent_pairEquality productElimination inhabitedIsType rename setElimination lambdaFormation_alt independent_isectElimination universeIsType hypothesis applyEquality productEquality lambdaEquality_alt sqequalRule because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid independent_pairFormation cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}].
    metric-subspace(X;d;stable-union(X;T;i,x.P[i;x])) 
    supposing  \mforall{}i:T.  \mforall{}x,y:X.    (P[i;x]  {}\mRightarrow{}  y  \mequiv{}  x  {}\mRightarrow{}  P[i;y])



Date html generated: 2019_10_30-AM-06_31_28
Last ObjectModification: 2019_10_24-AM-10_23_16

Theory : reals


Home Index