Nuprl Lemma : strictly-increasing-on-closed-interval
∀a,b:ℝ. ∀f:[a, b] ⟶ℝ.
  (f[x] strictly-increasing for x ∈ (a, b) ⇒ f[x] increasing for x ∈ [a, b] ⇒ f[x] strictly-increasing for x ∈ [a, b])
Proof
Definitions occuring in Statement : 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I, 
increasing-on-interval: f[x] increasing for x ∈ I, 
rfun: I ⟶ℝ, 
rooint: (l, u), 
rccint: [l, u], 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
rfun: I ⟶ℝ, 
label: ...$L... t, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
uall: ∀[x:A]. B[x], 
cand: A c∧ B, 
and: P ∧ Q, 
implies: P ⇒ Q, 
top: Top, 
member: t ∈ T, 
subinterval: I ⊆ J , 
all: ∀x:A. B[x], 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I, 
exists: ∃x:A. B[x], 
squash: ↓T, 
sq_stable: SqStable(P), 
increasing-on-interval: f[x] increasing for x ∈ I
Lemmas referenced : 
rfun_wf, 
subtype_rel_sets, 
rooint_wf, 
strictly-increasing-on-interval_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
increasing-on-interval_wf, 
rless_wf, 
rleq_weakening_rless, 
member_rccint_lemma, 
member_rooint_lemma, 
set_wf, 
ravg_wf, 
ravg-between, 
exists_wf, 
sq_stable__rless, 
rleq_wf, 
rless_transitivity1, 
rless_transitivity2, 
sq_stable__rleq
Rules used in proof : 
independent_functionElimination, 
setEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
applyEquality, 
lambdaEquality, 
because_Cache, 
productEquality, 
independent_pairFormation, 
independent_isectElimination, 
hypothesisEquality, 
isectElimination, 
productElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_pairFormation, 
imageElimination, 
baseClosed, 
imageMemberEquality
Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.
    (f[x]  strictly-increasing  for  x  \mmember{}  (a,  b)
    {}\mRightarrow{}  f[x]  increasing  for  x  \mmember{}  [a,  b]
    {}\mRightarrow{}  f[x]  strictly-increasing  for  x  \mmember{}  [a,  b])
Date html generated:
2017_10_03-PM-00_29_19
Last ObjectModification:
2017_07_30-PM-08_50_55
Theory : reals
Home
Index