Nuprl Lemma : ravg-between

x,y:ℝ.  ((x < y)  ((x < ravg(x;y)) ∧ (ravg(x;y) < y)))


Proof




Definitions occuring in Statement :  ravg: ravg(x;y) rless: x < y real: all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B ravg: ravg(x;y) member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q prop: less_than: a < b squash: T less_than': less_than'(a;b) true: True itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) rdiv: (x/y)
Lemmas referenced :  rmul_preserves_rless rdiv_wf rless-int rless_wf real_wf rmul_wf int-to-real_wf radd_wf rinv_wf2 rless-implies-rless real_term_polynomial itermSubtract_wf itermVar_wf itermAdd_wf itermMultiply_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_mul_lemma req-iff-rsub-is-0 rsub_wf rless_functionality req_transitivity radd_functionality rmul_functionality rmul-rinv req_weakening rmul-identity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache isectElimination independent_isectElimination sqequalRule hypothesis inrFormation productElimination independent_functionElimination natural_numberEquality independent_pairFormation imageMemberEquality hypothesisEquality baseClosed computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  ((x  <  ravg(x;y))  \mwedge{}  (ravg(x;y)  <  y)))



Date html generated: 2017_10_03-AM-08_41_52
Last ObjectModification: 2017_07_28-AM-07_34_35

Theory : reals


Home Index