Step
*
1
1
2
2
3
2
of Lemma
DAlembert-equation-iff3
1. f : ℝ ⟶ ℝ
2. ∀x,y:ℝ. ((x = y)
⇒ ((f x) = (f y)))
3. ∀x,y:ℝ. (((f (x + y)) + (f (x - y))) = (r(2) * (f x) * (f y)))
4. u : ℝ
5. r0 < u
6. g : (-(u), u) ⟶ℝ
7. h : (-(u), u) ⟶ℝ
8. d(f x)/dx = λx.g x on (-(u), u)
9. d(g x)/dx = λx.h x on (-(u), u)
10. r0 < (h r0)
11. ¬¬((∃c:ℝ. ∀x:ℝ. ((f x) = rcos(c * x))) ∨ (∃c:ℝ. ∀x:ℝ. ((f x) = cosh(c * x))))
12. ∀c:ℝ. ((∀x:ℝ. ((f x) = rcos(c * x)))
⇒ rfun-eq((-(u), u);λ2x.c * -(c * rcos(c * x));λ2x.h x))
13. ∀c:ℝ. ((∀x:ℝ. ((f x) = cosh(c * x)))
⇒ rfun-eq((-(u), u);λ2x.c * c * cosh(c * x);λ2x.h x))
14. x : ℝ
15. c : ℝ
16. ∀x:ℝ. ((f x) = cosh(c * x))
17. (c * c) = (h r0)
⊢ (f x) = cosh(rsqrt(h r0) * x)
BY
{ (Assert rsqrt(h r0) = |c| BY
(RWO "-1<" 0 THEN Auto)) }
1
1. f : ℝ ⟶ ℝ
2. ∀x,y:ℝ. ((x = y)
⇒ ((f x) = (f y)))
3. ∀x,y:ℝ. (((f (x + y)) + (f (x - y))) = (r(2) * (f x) * (f y)))
4. u : ℝ
5. r0 < u
6. g : (-(u), u) ⟶ℝ
7. h : (-(u), u) ⟶ℝ
8. d(f x)/dx = λx.g x on (-(u), u)
9. d(g x)/dx = λx.h x on (-(u), u)
10. r0 < (h r0)
11. ¬¬((∃c:ℝ. ∀x:ℝ. ((f x) = rcos(c * x))) ∨ (∃c:ℝ. ∀x:ℝ. ((f x) = cosh(c * x))))
12. ∀c:ℝ. ((∀x:ℝ. ((f x) = rcos(c * x)))
⇒ rfun-eq((-(u), u);λ2x.c * -(c * rcos(c * x));λ2x.h x))
13. ∀c:ℝ. ((∀x:ℝ. ((f x) = cosh(c * x)))
⇒ rfun-eq((-(u), u);λ2x.c * c * cosh(c * x);λ2x.h x))
14. x : ℝ
15. c : ℝ
16. ∀x:ℝ. ((f x) = cosh(c * x))
17. (c * c) = (h r0)
18. rsqrt(h r0) = |c|
⊢ (f x) = cosh(rsqrt(h r0) * x)
Latex:
Latex:
1. f : \mBbbR{} {}\mrightarrow{} \mBbbR{}
2. \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} ((f x) = (f y)))
3. \mforall{}x,y:\mBbbR{}. (((f (x + y)) + (f (x - y))) = (r(2) * (f x) * (f y)))
4. u : \mBbbR{}
5. r0 < u
6. g : (-(u), u) {}\mrightarrow{}\mBbbR{}
7. h : (-(u), u) {}\mrightarrow{}\mBbbR{}
8. d(f x)/dx = \mlambda{}x.g x on (-(u), u)
9. d(g x)/dx = \mlambda{}x.h x on (-(u), u)
10. r0 < (h r0)
11. \mneg{}\mneg{}((\mexists{}c:\mBbbR{}. \mforall{}x:\mBbbR{}. ((f x) = rcos(c * x))) \mvee{} (\mexists{}c:\mBbbR{}. \mforall{}x:\mBbbR{}. ((f x) = cosh(c * x))))
12. \mforall{}c:\mBbbR{}. ((\mforall{}x:\mBbbR{}. ((f x) = rcos(c * x))) {}\mRightarrow{} rfun-eq((-(u), u);\mlambda{}\msubtwo{}x.c * -(c * rcos(c * x));\mlambda{}\msubtwo{}x.h x))
13. \mforall{}c:\mBbbR{}. ((\mforall{}x:\mBbbR{}. ((f x) = cosh(c * x))) {}\mRightarrow{} rfun-eq((-(u), u);\mlambda{}\msubtwo{}x.c * c * cosh(c * x);\mlambda{}\msubtwo{}x.h x))
14. x : \mBbbR{}
15. c : \mBbbR{}
16. \mforall{}x:\mBbbR{}. ((f x) = cosh(c * x))
17. (c * c) = (h r0)
\mvdash{} (f x) = cosh(rsqrt(h r0) * x)
By
Latex:
(Assert rsqrt(h r0) = |c| BY
(RWO "-1<" 0 THEN Auto))
Home
Index