Step
*
1
1
1
of Lemma
Legendre-annihilates-rpolynomial
.....subterm..... T:t
1:n
1. n : ℕ
2. f : [r(-1), r1] ⟶ℝ
3. ∃k:ℕn. ∃a:ℕk + 1 ⟶ ℝ. ∀x:{x:ℝ| x ∈ [r(-1), r1]} . ((f x) = (Σi≤k. a_i * x^i))
4. x : {x:ℝ| x ∈ [rmin(r(-1);r1), rmax(r(-1);r1)]}
⊢ (f x) * Legendre(n;x) ∈ ℝ
BY
{ D -1 }
1
1. n : ℕ
2. f : [r(-1), r1] ⟶ℝ
3. ∃k:ℕn. ∃a:ℕk + 1 ⟶ ℝ. ∀x:{x:ℝ| x ∈ [r(-1), r1]} . ((f x) = (Σi≤k. a_i * x^i))
4. x : ℝ
5. x ∈ [rmin(r(-1);r1), rmax(r(-1);r1)]
⊢ (f x) * Legendre(n;x) ∈ ℝ
Latex:
Latex:
.....subterm..... T:t
1:n
1. n : \mBbbN{}
2. f : [r(-1), r1] {}\mrightarrow{}\mBbbR{}
3. \mexists{}k:\mBbbN{}n. \mexists{}a:\mBbbN{}k + 1 {}\mrightarrow{} \mBbbR{}. \mforall{}x:\{x:\mBbbR{}| x \mmember{} [r(-1), r1]\} . ((f x) = (\mSigma{}i\mleq{}k. a\_i * x\^{}i))
4. x : \{x:\mBbbR{}| x \mmember{} [rmin(r(-1);r1), rmax(r(-1);r1)]\}
\mvdash{} (f x) * Legendre(n;x) \mmember{} \mBbbR{}
By
Latex:
D -1
Home
Index