Step
*
1
1
2
1
of Lemma
Riemann-integral-rless
1. a : ℝ
2. b : {b:ℝ| a < b}
3. f : {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
4. c : ℝ
5. ∀x:ℝ. ((x ∈ [a, b])
⇒ (f[x] ≤ c))
6. x : ℝ
7. x ∈ [a, b]
8. f[x] < c
9. a < b
10. ∀n:ℕ+
(∃d:{ℝ| ((r0 < d)
∧ (∀x,y:ℝ.
(((a ≤ x) ∧ (x ≤ b))
⇒ ((a ≤ y) ∧ (y ≤ b))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(n))))))})
⊢ ∃d,c':ℝ. ((r0 < d) ∧ (c' < c) ∧ (∀y:ℝ. ((y ∈ [a, b])
⇒ (|y - x| ≤ d)
⇒ (f[y] ≤ c'))))
BY
{ ((Assert ∃c':ℝ. ((f[x] < c') ∧ (c' < c)) BY (InstLemma `ravg-between` [⌜f[x]⌝;⌜c⌝]⋅ THEN Auto)) THEN ExRepD) }
1
1. a : ℝ
2. b : {b:ℝ| a < b}
3. f : {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
4. c : ℝ
5. ∀x:ℝ. ((x ∈ [a, b])
⇒ (f[x] ≤ c))
6. x : ℝ
7. x ∈ [a, b]
8. f[x] < c
9. a < b
10. ∀n:ℕ+
(∃d:{ℝ| ((r0 < d)
∧ (∀x,y:ℝ.
(((a ≤ x) ∧ (x ≤ b))
⇒ ((a ≤ y) ∧ (y ≤ b))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(n))))))})
11. c' : ℝ
12. f[x] < c'
13. c' < c
⊢ ∃d,c':ℝ. ((r0 < d) ∧ (c' < c) ∧ (∀y:ℝ. ((y ∈ [a, b])
⇒ (|y - x| ≤ d)
⇒ (f[y] ≤ c'))))
Latex:
Latex:
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a < b\}
3. f : \{f:[a, b] {}\mrightarrow{}\mBbbR{}| ifun(f;[a, b])\}
4. c : \mBbbR{}
5. \mforall{}x:\mBbbR{}. ((x \mmember{} [a, b]) {}\mRightarrow{} (f[x] \mleq{} c))
6. x : \mBbbR{}
7. x \mmember{} [a, b]
8. f[x] < c
9. a < b
10. \mforall{}n:\mBbbN{}\msupplus{}
(\mexists{}d:\{\mBbbR{}| ((r0 < d)
\mwedge{} (\mforall{}x,y:\mBbbR{}.
(((a \mleq{} x) \mwedge{} (x \mleq{} b))
{}\mRightarrow{} ((a \mleq{} y) \mwedge{} (y \mleq{} b))
{}\mRightarrow{} (|x - y| \mleq{} d)
{}\mRightarrow{} (|f[x] - f[y]| \mleq{} (r1/r(n))))))\})
\mvdash{} \mexists{}d,c':\mBbbR{}. ((r0 < d) \mwedge{} (c' < c) \mwedge{} (\mforall{}y:\mBbbR{}. ((y \mmember{} [a, b]) {}\mRightarrow{} (|y - x| \mleq{} d) {}\mRightarrow{} (f[y] \mleq{} c'))))
By
Latex:
((Assert \mexists{}c':\mBbbR{}. ((f[x] < c') \mwedge{} (c' < c)) BY
(InstLemma `ravg-between` [\mkleeneopen{}f[x]\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THEN Auto))
THEN ExRepD
)
Home
Index