Nuprl Lemma : Riemann-integral_functionality

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f,g:{f:[a, b] ⟶ℝifun(f;[a, b])} ].
  ∫ f[x] dx on [a, b] = ∫ g[x] dx on [a, b] supposing ∀x:ℝ(((a ≤ x) ∧ (x ≤ b))  (f[x] g[x]))


Proof




Definitions occuring in Statement :  Riemann-integral: ∫ f[x] dx on [a, b] ifun: ifun(f;I) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y req: y real: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] prop: ifun: ifun(f;I) all: x:A. B[x] top: Top real-fun: real-fun(f;a;b) implies:  Q uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q sq_stable: SqStable(P) squash: T cand: c∧ B i-member: r ∈ I rccint: [l, u]
Lemmas referenced :  rleq_antisymmetry Riemann-integral_wf i-member_wf rccint_wf real_wf left_endpoint_rccint_lemma right_endpoint_rccint_lemma req_functionality req_weakening req_wf set_wf ifun_wf rccint-icompact Riemann-integral-rleq req_witness all_wf rleq_wf member_rccint_lemma rfun_wf sq_stable__rleq rleq_weakening_equal rleq_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache setElimination rename dependent_set_memberEquality hypothesis sqequalRule lambdaEquality applyEquality hypothesisEquality setEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation independent_functionElimination independent_isectElimination productElimination functionEquality productEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination independent_pairFormation

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f,g:\{f:[a,  b]  {}\mrightarrow{}\mBbbR{}|  ifun(f;[a,  b])\}  ].
    \mint{}  f[x]  dx  on  [a,  b]  =  \mint{}  g[x]  dx  on  [a,  b]  supposing  \mforall{}x:\mBbbR{}.  (((a  \mleq{}  x)  \mwedge{}  (x  \mleq{}  b))  {}\mRightarrow{}  (f[x]  =  g[x]))



Date html generated: 2016_10_26-PM-00_05_54
Last ObjectModification: 2016_09_12-PM-05_38_23

Theory : reals_2


Home Index