Step
*
1
1
2
1
1
2
of Lemma
arctan-poly-approx-1
1. ∀x:ℝ. (r0 < (r1 + x^2))
2. ∀x:ℝ. -(x^2) ≠ r1
3. x : {x:ℝ| r0 ≤ x} 
4. k : ℕ
5. r0_∫-x (r1/r1 + x^2) - Σ{-(x^2)^i | 0≤i≤k} dx = (arctangent(x) - r0_∫-x Σ{-(x^2)^i | 0≤i≤k} dx)
6. i : ℤ
7. 0 ≤ i
8. i ≤ k
9. r0_∫-x -(x^2)^i dx = r0_∫-x r(-1)^i * x^2 * i dx
⊢ (if (i rem 2 =z 0) then x^(2 * i) + 1 else -(x^(2 * i) + 1) fi )/(2 * i) + 1 = r0_∫-x -(x^2)^i dx
BY
{ (RWO  "integral-rmul-const" (-1) THENA Auto) }
1
1. ∀x:ℝ. (r0 < (r1 + x^2))
2. ∀x:ℝ. -(x^2) ≠ r1
3. x : {x:ℝ| r0 ≤ x} 
4. k : ℕ
5. r0_∫-x (r1/r1 + x^2) - Σ{-(x^2)^i | 0≤i≤k} dx = (arctangent(x) - r0_∫-x Σ{-(x^2)^i | 0≤i≤k} dx)
6. i : ℤ
7. 0 ≤ i
8. i ≤ k
9. r0_∫-x -(x^2)^i dx = (r(-1)^i * r0_∫-x x^2 * i dx)
⊢ (if (i rem 2 =z 0) then x^(2 * i) + 1 else -(x^(2 * i) + 1) fi )/(2 * i) + 1 = r0_∫-x -(x^2)^i dx
Latex:
Latex:
1.  \mforall{}x:\mBbbR{}.  (r0  <  (r1  +  x\^{}2))
2.  \mforall{}x:\mBbbR{}.  -(x\^{}2)  \mneq{}  r1
3.  x  :  \{x:\mBbbR{}|  r0  \mleq{}  x\} 
4.  k  :  \mBbbN{}
5.  r0\_\mint{}\msupminus{}x  (r1/r1  +  x\^{}2)  -  \mSigma{}\{-(x\^{}2)\^{}i  |  0\mleq{}i\mleq{}k\}  dx  =  (arctangent(x)  -  r0\_\mint{}\msupminus{}x  \mSigma{}\{-(x\^{}2)\^{}i  |  0\mleq{}i\mleq{}k\}  dx)
6.  i  :  \mBbbZ{}
7.  0  \mleq{}  i
8.  i  \mleq{}  k
9.  r0\_\mint{}\msupminus{}x  -(x\^{}2)\^{}i  dx  =  r0\_\mint{}\msupminus{}x  r(-1)\^{}i  *  x\^{}2  *  i  dx
\mvdash{}  (if  (i  rem  2  =\msubz{}  0)  then  x\^{}(2  *  i)  +  1  else  -(x\^{}(2  *  i)  +  1)  fi  )/(2  *  i)  +  1  =  r0\_\mint{}\msupminus{}x  -(x\^{}2)\^{}i  dx
By
Latex:
(RWO    "integral-rmul-const"  (-1)  THENA  Auto)
Home
Index