Step
*
2
2
1
1
1
1
of Lemma
derivative-rexp
1. lim n→∞.Σ{(x^i)/(i)! | 0≤i≤n} = λx.e^x for x ∈ (-∞, ∞)
2. n : ℕ
3. d(Σ{(x^i)/(i)! | 0≤i≤n})/dx = λx.Σ{if (i =z 0) then r0 else (x^i - 1)/(i - 1)! fi | 0≤i≤n} on (-∞, ∞)
4. x : {x:ℝ| x ∈ (-∞, ∞)}
5. ∀[x:ℕn + 1 ⟶ ℝ]
(Σ{x[i] | 0≤i≤n} = (Σ{x[i] | 0≤i≤0} + Σ{x[0 + i + 1] | 0≤i≤n - 0 + 1})) supposing ((0 ≤ n) and (0 ≤ 0))
⊢ if (0 + i + 1 =z 0) then r0 else (x^(0 + i + 1) - 1)/((0 + i + 1) - 1)! fi = (x^i)/(i)! for i ∈ [0,n - 1]
BY
{ ((D 0 THENA Auto) THEN AutoSplit THEN Auto) }
1
1. lim n→∞.Σ{(x^i)/(i)! | 0≤i≤n} = λx.e^x for x ∈ (-∞, ∞)
2. n : ℕ
3. d(Σ{(x^i)/(i)! | 0≤i≤n})/dx = λx.Σ{if (i =z 0) then r0 else (x^i - 1)/(i - 1)! fi | 0≤i≤n} on (-∞, ∞)
4. x : {x:ℝ| x ∈ (-∞, ∞)}
5. ∀[x:ℕn + 1 ⟶ ℝ]
(Σ{x[i] | 0≤i≤n} = (Σ{x[i] | 0≤i≤0} + Σ{x[0 + i + 1] | 0≤i≤n - 0 + 1})) supposing ((0 ≤ n) and (0 ≤ 0))
6. i : ℤ
7. 0 + i + 1 ≠ 0
8. 0 ≤ i
9. i ≤ (n - 1)
⊢ (x^(0 + i + 1) - 1)/((0 + i + 1) - 1)! = (x^i)/(i)!
Latex:
Latex:
1. lim n\mrightarrow{}\minfty{}.\mSigma{}\{(x\^{}i)/(i)! | 0\mleq{}i\mleq{}n\} = \mlambda{}x.e\^{}x for x \mmember{} (-\minfty{}, \minfty{})
2. n : \mBbbN{}
3. d(\mSigma{}\{(x\^{}i)/(i)! | 0\mleq{}i\mleq{}n\})/dx = \mlambda{}x.\mSigma{}\{if (i =\msubz{} 0)
then r0
else (x\^{}i - 1)/(i - 1)!
fi | 0\mleq{}i\mleq{}n\} on (-\minfty{}, \minfty{})
4. x : \{x:\mBbbR{}| x \mmember{} (-\minfty{}, \minfty{})\}
5. \mforall{}[x:\mBbbN{}n + 1 {}\mrightarrow{} \mBbbR{}]
(\mSigma{}\{x[i] | 0\mleq{}i\mleq{}n\} = (\mSigma{}\{x[i] | 0\mleq{}i\mleq{}0\} + \mSigma{}\{x[0 + i + 1] | 0\mleq{}i\mleq{}n - 0 + 1\})) supposing
((0 \mleq{} n) and
(0 \mleq{} 0))
\mvdash{} if (0 + i + 1 =\msubz{} 0)
then r0
else (x\^{}(0 + i + 1) - 1)/((0 + i + 1) - 1)!
fi = (x\^{}i)/(i)! for i \mmember{} [0,n - 1]
By
Latex:
((D 0 THENA Auto) THEN AutoSplit THEN Auto)
Home
Index