Step
*
1
3
1
of Lemma
derivative-rsqrt
1. d(e^(r1/r(2)) * rlog(x))/dx = λx.e^(r1/r(2)) * rlog(x) * (r1/r(2)) * (r1/x) on (r0, ∞)
2. x : ℝ
3. [%2] : r0 < x
4. r0 < rsqrt(x)
5. r(2) * rsqrt(x) ≠ r0
⊢ ((e^(r1/r(2)) * rlog(x) * (r1/r(2)) * (r1/x)) * r(2) * rsqrt(x)) = r1
BY
{ (Assert e^(r1/r(2)) * rlog(x) = rsqrt(x) BY
(((RWO "rsqrt-as-rexp" 0 THENM BLemma `rexp_functionality`) THENA Auto) THEN nRMul ⌜r(2)⌝ 0⋅ THEN Auto)) }
1
1. d(e^(r1/r(2)) * rlog(x))/dx = λx.e^(r1/r(2)) * rlog(x) * (r1/r(2)) * (r1/x) on (r0, ∞)
2. x : ℝ
3. [%2] : r0 < x
4. r0 < rsqrt(x)
5. r(2) * rsqrt(x) ≠ r0
6. e^(r1/r(2)) * rlog(x) = rsqrt(x)
⊢ ((e^(r1/r(2)) * rlog(x) * (r1/r(2)) * (r1/x)) * r(2) * rsqrt(x)) = r1
Latex:
Latex:
1. d(e\^{}(r1/r(2)) * rlog(x))/dx = \mlambda{}x.e\^{}(r1/r(2)) * rlog(x) * (r1/r(2)) * (r1/x) on (r0, \minfty{})
2. x : \mBbbR{}
3. [\%2] : r0 < x
4. r0 < rsqrt(x)
5. r(2) * rsqrt(x) \mneq{} r0
\mvdash{} ((e\^{}(r1/r(2)) * rlog(x) * (r1/r(2)) * (r1/x)) * r(2) * rsqrt(x)) = r1
By
Latex:
(Assert e\^{}(r1/r(2)) * rlog(x) = rsqrt(x) BY
(((RWO "rsqrt-as-rexp" 0 THENM BLemma `rexp\_functionality`) THENA Auto)
THEN nRMul \mkleeneopen{}r(2)\mkleeneclose{} 0\mcdot{}
THEN Auto))
Home
Index