Step
*
1
2
1
1
1
of Lemma
integral-rsum
1. d : ℤ
2. 0 < d
3. ∀[n:ℤ]. ∀[a,b:ℝ]. ∀[f:{f:{n..(n + (d - 1)) + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ|
∀i:{n..(n + (d - 1)) + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])} ].
(a_∫-b Σ{f[i;x] | n≤i≤n + (d - 1)} dx = Σ{a_∫-b f[i;x] dx | n≤i≤n + (d - 1)})
4. n : ℤ
5. a : ℝ
6. b : ℝ
7. f : {f:{n..(n + d) + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ|
∀i:{n..(n + d) + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])}
⊢ a_∫-b Σ{f[i;x] | n≤i≤n + (d - 1)} dx = Σ{a_∫-b f[i;x] dx | n≤i≤n + (d - 1)}
BY
{ BackThruSomeHyp }
1
.....wf.....
1. d : ℤ
2. 0 < d
3. ∀[n:ℤ]. ∀[a,b:ℝ]. ∀[f:{f:{n..(n + (d - 1)) + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ|
∀i:{n..(n + (d - 1)) + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])} ].
(a_∫-b Σ{f[i;x] | n≤i≤n + (d - 1)} dx = Σ{a_∫-b f[i;x] dx | n≤i≤n + (d - 1)})
4. n : ℤ
5. a : ℝ
6. b : ℝ
7. f : {f:{n..(n + d) + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ|
∀i:{n..(n + d) + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])}
⊢ λi,x. f[i;x] ∈ {f:{n..(n + (d - 1)) + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ|
∀i:{n..(n + (d - 1)) + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])}
Latex:
Latex:
1. d : \mBbbZ{}
2. 0 < d
3. \mforall{}[n:\mBbbZ{}]. \mforall{}[a,b:\mBbbR{}]. \mforall{}[f:\{f:\{n..(n + (d - 1)) + 1\msupminus{}\} {}\mrightarrow{} [rmin(a;b), rmax(a;b)] {}\mrightarrow{}\mBbbR{}|
\mforall{}i:\{n..(n + (d - 1)) + 1\msupminus{}\}. ifun(\mlambda{}x.f[i;x];[rmin(a;b), rmax(a;b)])\} ].
(a\_\mint{}\msupminus{}b \mSigma{}\{f[i;x] | n\mleq{}i\mleq{}n + (d - 1)\} dx = \mSigma{}\{a\_\mint{}\msupminus{}b f[i;x] dx | n\mleq{}i\mleq{}n + (d - 1)\})
4. n : \mBbbZ{}
5. a : \mBbbR{}
6. b : \mBbbR{}
7. f : \{f:\{n..(n + d) + 1\msupminus{}\} {}\mrightarrow{} [rmin(a;b), rmax(a;b)] {}\mrightarrow{}\mBbbR{}|
\mforall{}i:\{n..(n + d) + 1\msupminus{}\}. ifun(\mlambda{}x.f[i;x];[rmin(a;b), rmax(a;b)])\}
\mvdash{} a\_\mint{}\msupminus{}b \mSigma{}\{f[i;x] | n\mleq{}i\mleq{}n + (d - 1)\} dx = \mSigma{}\{a\_\mint{}\msupminus{}b f[i;x] dx | n\mleq{}i\mleq{}n + (d - 1)\}
By
Latex:
BackThruSomeHyp
Home
Index