Step
*
2
1
1
1
1
1
of Lemma
integral-rsum
1. ∀d:ℕ
∀[n:ℤ]. ∀[a,b:ℝ]. ∀[f:{f:{n..(n + d) + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ|
∀i:{n..(n + d) + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])} ].
(a_∫-b Σ{f[i;x] | n≤i≤n + d} dx = Σ{a_∫-b f[i;x] dx | n≤i≤n + d})
2. n : ℤ
3. m : ℤ
4. a : ℝ
5. b : ℝ
6. f : {n..m + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ
7. ∀i:{n..m + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])
8. ∀x,y:{x:ℝ| x ∈ [rmin(a;b), rmax(a;b)]} . ((x = y)
⇒ (Σ{f i x | n≤i≤m} = Σ{f i y | n≤i≤m}))
9. n ≤ m
10. ∀[f:{f:{n..m + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ| ∀i:{n..m + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])} ]
(a_∫-b Σ{f[i;x] | n≤i≤m} dx = Σ{a_∫-b f[i;x] dx | n≤i≤m})
⊢ λi,x. f[i;x] ∈ {f:{n..m + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ| ∀i:{n..m + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])}
BY
{ (MemTypeCD THEN Auto) }
1
1. ∀d:ℕ
∀[n:ℤ]. ∀[a,b:ℝ]. ∀[f:{f:{n..(n + d) + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ|
∀i:{n..(n + d) + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])} ].
(a_∫-b Σ{f[i;x] | n≤i≤n + d} dx = Σ{a_∫-b f[i;x] dx | n≤i≤n + d})
2. n : ℤ
3. m : ℤ
4. a : ℝ
5. b : ℝ
6. f : {n..m + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ
7. ∀i:{n..m + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])
8. ∀x,y:{x:ℝ| x ∈ [rmin(a;b), rmax(a;b)]} . ((x = y)
⇒ (Σ{f i x | n≤i≤m} = Σ{f i y | n≤i≤m}))
9. n ≤ m
10. ∀[f:{f:{n..m + 1-} ⟶ [rmin(a;b), rmax(a;b)] ⟶ℝ| ∀i:{n..m + 1-}. ifun(λx.f[i;x];[rmin(a;b), rmax(a;b)])} ]
(a_∫-b Σ{f[i;x] | n≤i≤m} dx = Σ{a_∫-b f[i;x] dx | n≤i≤m})
11. i : {n..m + 1-}
⊢ ifun(λx.λi,x. f[i;x][i;x];[rmin(a;b), rmax(a;b)])
Latex:
Latex:
1. \mforall{}d:\mBbbN{}
\mforall{}[n:\mBbbZ{}]. \mforall{}[a,b:\mBbbR{}]. \mforall{}[f:\{f:\{n..(n + d) + 1\msupminus{}\} {}\mrightarrow{} [rmin(a;b), rmax(a;b)] {}\mrightarrow{}\mBbbR{}|
\mforall{}i:\{n..(n + d) + 1\msupminus{}\}. ifun(\mlambda{}x.f[i;x];[rmin(a;b), rmax(a;b)])\} ].
(a\_\mint{}\msupminus{}b \mSigma{}\{f[i;x] | n\mleq{}i\mleq{}n + d\} dx = \mSigma{}\{a\_\mint{}\msupminus{}b f[i;x] dx | n\mleq{}i\mleq{}n + d\})
2. n : \mBbbZ{}
3. m : \mBbbZ{}
4. a : \mBbbR{}
5. b : \mBbbR{}
6. f : \{n..m + 1\msupminus{}\} {}\mrightarrow{} [rmin(a;b), rmax(a;b)] {}\mrightarrow{}\mBbbR{}
7. \mforall{}i:\{n..m + 1\msupminus{}\}. ifun(\mlambda{}x.f[i;x];[rmin(a;b), rmax(a;b)])
8. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [rmin(a;b), rmax(a;b)]\} . ((x = y) {}\mRightarrow{} (\mSigma{}\{f i x | n\mleq{}i\mleq{}m\} = \mSigma{}\{f i y | n\mleq{}i\mleq{}m\}))
9. n \mleq{} m
10. \mforall{}[f:\{f:\{n..m + 1\msupminus{}\} {}\mrightarrow{} [rmin(a;b), rmax(a;b)] {}\mrightarrow{}\mBbbR{}|
\mforall{}i:\{n..m + 1\msupminus{}\}. ifun(\mlambda{}x.f[i;x];[rmin(a;b), rmax(a;b)])\} ]
(a\_\mint{}\msupminus{}b \mSigma{}\{f[i;x] | n\mleq{}i\mleq{}m\} dx = \mSigma{}\{a\_\mint{}\msupminus{}b f[i;x] dx | n\mleq{}i\mleq{}m\})
\mvdash{} \mlambda{}i,x. f[i;x] \mmember{} \{f:\{n..m + 1\msupminus{}\} {}\mrightarrow{} [rmin(a;b), rmax(a;b)] {}\mrightarrow{}\mBbbR{}|
\mforall{}i:\{n..m + 1\msupminus{}\}. ifun(\mlambda{}x.f[i;x];[rmin(a;b), rmax(a;b)])\}
By
Latex:
(MemTypeCD THEN Auto)
Home
Index