Nuprl Lemma : inv-sinh_wf
∀[x:ℝ]. (inv-sinh(x) ∈ ℝ)
Proof
Definitions occuring in Statement : 
inv-sinh: inv-sinh(x)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
inv-sinh: inv-sinh(x)
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
inv-sinh-domain, 
ln_wf, 
radd_wf, 
rsqrt_wf, 
rmul_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
req_wf, 
rless_wf, 
rlog_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
dependent_set_memberEquality, 
isectElimination, 
hypothesis, 
natural_numberEquality, 
productElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbR{}].  (inv-sinh(x)  \mmember{}  \mBbbR{})
Date html generated:
2017_10_04-PM-10_43_04
Last ObjectModification:
2017_06_24-AM-10_44_21
Theory : reals_2
Home
Index