Nuprl Lemma : inv-sinh-domain

x:ℝ((r0 ≤ ((x x) r1)) ∧ (r0 < (x rsqrt((x x) r1))))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y rless: x < y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: subtype_rel: A ⊆B cand: c∧ B uimplies: supposing a nat: uiff: uiff(P;Q) less_than: a < b squash: T true: True rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  square-nonneg radd-non-neg rmul_wf int-to-real_wf rleq-int false_wf rsqrt_nonneg radd_wf rleq_wf square-rless-implies rminus_wf rsqrt_wf real_wf req_wf rless-implies-rless rnexp_wf le_wf itermSubtract_wf itermMultiply_wf itermMinus_wf itermVar_wf req-iff-rsub-is-0 trivial-rless-radd rless-int rsub_wf itermAdd_wf itermConstant_wf rless_functionality req_weakening rsqrt-rnexp-2 req_functionality rnexp2 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination natural_numberEquality independent_functionElimination productElimination sqequalRule independent_pairFormation dependent_set_memberEquality because_Cache applyEquality lambdaEquality setElimination rename setEquality productEquality independent_isectElimination imageMemberEquality baseClosed approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  ((x  *  x)  +  r1))  \mwedge{}  (r0  <  (x  +  rsqrt((x  *  x)  +  r1))))



Date html generated: 2017_10_04-PM-10_41_47
Last ObjectModification: 2017_06_24-AM-10_43_48

Theory : reals_2


Home Index