Nuprl Lemma : inv-sinh-domain
∀x:ℝ. ((r0 ≤ ((x * x) + r1)) ∧ (r0 < (x + rsqrt((x * x) + r1))))
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x), 
rleq: x ≤ y, 
rless: x < y, 
rmul: a * b, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
cand: A c∧ B, 
uimplies: b supposing a, 
nat: ℕ, 
uiff: uiff(P;Q), 
less_than: a < b, 
squash: ↓T, 
true: True, 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top
Lemmas referenced : 
square-nonneg, 
radd-non-neg, 
rmul_wf, 
int-to-real_wf, 
rleq-int, 
false_wf, 
rsqrt_nonneg, 
radd_wf, 
rleq_wf, 
square-rless-implies, 
rminus_wf, 
rsqrt_wf, 
real_wf, 
req_wf, 
rless-implies-rless, 
rnexp_wf, 
le_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
trivial-rless-radd, 
rless-int, 
rsub_wf, 
itermAdd_wf, 
itermConstant_wf, 
rless_functionality, 
req_weakening, 
rsqrt-rnexp-2, 
req_functionality, 
rnexp2, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
independent_pairFormation, 
dependent_set_memberEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  ((x  *  x)  +  r1))  \mwedge{}  (r0  <  (x  +  rsqrt((x  *  x)  +  r1))))
Date html generated:
2017_10_04-PM-10_41_47
Last ObjectModification:
2017_06_24-AM-10_43_48
Theory : reals_2
Home
Index