Step
*
2
1
1
1
1
of Lemma
logseq-property
1. a : {a:ℝ| r0 < a}
2. b : {b:ℝ| |b - rlog(a)| ≤ (r1/r(10))}
3. n : ℤ
4. 0 < n
5. |logseq(a;b;n - 1) - rlog(a)| ≤ (r1/r(10^3^(n - 1)))
6. c : ℝ
7. logseq(a;b;n - 1) = c ∈ ℝ
8. |lgc(a;(c within 1/4 * 10^3^n)) - (lgc(a;(c within 1/4 * 10^3^n)) within 1/4 * 10^3^n)| ≤ (r1/r(4 * 10^3^n))
9. |c - (c within 1/4 * 10^3^n)| ≤ (r1/r(4 * 10^3^n))
⊢ |(lgc(a;(c within 1/4 * 10^3^n)) within 1/4 * 10^3^n) - lgc(a;c)| ≤ (r1/r(2 * 10^3^n))
BY
{ Assert ⌜|lgc(a;(c within 1/4 * 10^3^n)) - lgc(a;c)| ≤ (r1/r(4 * 10^3^n))⌝⋅ }
1
.....assertion.....
1. a : {a:ℝ| r0 < a}
2. b : {b:ℝ| |b - rlog(a)| ≤ (r1/r(10))}
3. n : ℤ
4. 0 < n
5. |logseq(a;b;n - 1) - rlog(a)| ≤ (r1/r(10^3^(n - 1)))
6. c : ℝ
7. logseq(a;b;n - 1) = c ∈ ℝ
8. |lgc(a;(c within 1/4 * 10^3^n)) - (lgc(a;(c within 1/4 * 10^3^n)) within 1/4 * 10^3^n)| ≤ (r1/r(4 * 10^3^n))
9. |c - (c within 1/4 * 10^3^n)| ≤ (r1/r(4 * 10^3^n))
⊢ |lgc(a;(c within 1/4 * 10^3^n)) - lgc(a;c)| ≤ (r1/r(4 * 10^3^n))
2
1. a : {a:ℝ| r0 < a}
2. b : {b:ℝ| |b - rlog(a)| ≤ (r1/r(10))}
3. n : ℤ
4. 0 < n
5. |logseq(a;b;n - 1) - rlog(a)| ≤ (r1/r(10^3^(n - 1)))
6. c : ℝ
7. logseq(a;b;n - 1) = c ∈ ℝ
8. |lgc(a;(c within 1/4 * 10^3^n)) - (lgc(a;(c within 1/4 * 10^3^n)) within 1/4 * 10^3^n)| ≤ (r1/r(4 * 10^3^n))
9. |c - (c within 1/4 * 10^3^n)| ≤ (r1/r(4 * 10^3^n))
10. |lgc(a;(c within 1/4 * 10^3^n)) - lgc(a;c)| ≤ (r1/r(4 * 10^3^n))
⊢ |(lgc(a;(c within 1/4 * 10^3^n)) within 1/4 * 10^3^n) - lgc(a;c)| ≤ (r1/r(2 * 10^3^n))
Latex:
Latex:
1. a : \{a:\mBbbR{}| r0 < a\}
2. b : \{b:\mBbbR{}| |b - rlog(a)| \mleq{} (r1/r(10))\}
3. n : \mBbbZ{}
4. 0 < n
5. |logseq(a;b;n - 1) - rlog(a)| \mleq{} (r1/r(10\^{}3\^{}(n - 1)))
6. c : \mBbbR{}
7. logseq(a;b;n - 1) = c
8. |lgc(a;(c within 1/4 * 10\^{}3\^{}n)) - (lgc(a;(c within 1/4 * 10\^{}3\^{}n)) within 1/4 * 10\^{}3\^{}n)| \mleq{} (r1/r(4
* 10\^{}3\^{}n))
9. |c - (c within 1/4 * 10\^{}3\^{}n)| \mleq{} (r1/r(4 * 10\^{}3\^{}n))
\mvdash{} |(lgc(a;(c within 1/4 * 10\^{}3\^{}n)) within 1/4 * 10\^{}3\^{}n) - lgc(a;c)| \mleq{} (r1/r(2 * 10\^{}3\^{}n))
By
Latex:
Assert \mkleeneopen{}|lgc(a;(c within 1/4 * 10\^{}3\^{}n)) - lgc(a;c)| \mleq{} (r1/r(4 * 10\^{}3\^{}n))\mkleeneclose{}\mcdot{}
Home
Index