Step
*
2
2
1
1
1
of Lemma
near-arcsine-exists
1. ∀a:{a:ℝ| a ∈ (r0, r1)} . ∀N:ℕ+. (∃y:{ℝ| (|y - arcsine(a)| ≤ (r1/r(N)))})
2. ∀a:{a:ℝ| a ∈ (r(-1), r0)} . ∀N:ℕ+. (∃y:{ℝ| (|y - arcsine(a)| ≤ (r1/r(N)))})
3. a : ℝ
4. N : ℕ+
5. y : {y:ℝ| |r0 - y| ≤ (r1/r(1000))}
6. y ∈ (r(-1), r1)
⊢ ∃y@0:{ℝ| (|y@0 - arcsine(y)| ≤ (r1/r(N)))}
BY
{ (Thin 3 THEN D -2 THEN Thin (-2) THEN RenameVar `a' (-2) THEN MoveToConcl (-1)) }
1
1. ∀a:{a:ℝ| a ∈ (r0, r1)} . ∀N:ℕ+. (∃y:{ℝ| (|y - arcsine(a)| ≤ (r1/r(N)))})
2. ∀a:{a:ℝ| a ∈ (r(-1), r0)} . ∀N:ℕ+. (∃y:{ℝ| (|y - arcsine(a)| ≤ (r1/r(N)))})
3. N : ℕ+
4. a : ℝ
⊢ (a ∈ (r(-1), r1))
⇒ (∃y@0:{ℝ| (|y@0 - arcsine(a)| ≤ (r1/r(N)))})
Latex:
Latex:
1. \mforall{}a:\{a:\mBbbR{}| a \mmember{} (r0, r1)\} . \mforall{}N:\mBbbN{}\msupplus{}. (\mexists{}y:\{\mBbbR{}| (|y - arcsine(a)| \mleq{} (r1/r(N)))\})
2. \mforall{}a:\{a:\mBbbR{}| a \mmember{} (r(-1), r0)\} . \mforall{}N:\mBbbN{}\msupplus{}. (\mexists{}y:\{\mBbbR{}| (|y - arcsine(a)| \mleq{} (r1/r(N)))\})
3. a : \mBbbR{}
4. N : \mBbbN{}\msupplus{}
5. y : \{y:\mBbbR{}| |r0 - y| \mleq{} (r1/r(1000))\}
6. y \mmember{} (r(-1), r1)
\mvdash{} \mexists{}y@0:\{\mBbbR{}| (|y@0 - arcsine(y)| \mleq{} (r1/r(N)))\}
By
Latex:
(Thin 3 THEN D -2 THEN Thin (-2) THEN RenameVar `a' (-2) THEN MoveToConcl (-1))
Home
Index