Nuprl Lemma : nearby-partition-sum-ext
∀I:Interval
  (icompact(I)
  ⇒ iproper(I)
  ⇒ (∀f:I ⟶ℝ. ∀mc:f[x] continuous for x ∈ I. ∀p:partition(I). ∀x:partition-choice(full-partition(I;p)).
      ∀alpha:{a:ℝ| r0 < a} .
        ∃e:{e:ℝ| r0 < e} 
         ∀q:partition(I). ∀y:partition-choice(full-partition(I;q)).
           (nearby-partitions(e;p;q)
           ⇒ (∀i:ℕ||p|| + 1. (|x[i] - y[i]| ≤ e))
           ⇒ (|S(f;full-partition(I;q)) - S(f;full-partition(I;p))| ≤ alpha))))
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I, 
partition-sum: S(f;p), 
partition-choice-ap: x[i], 
partition-choice: partition-choice(p), 
full-partition: full-partition(I;p), 
nearby-partitions: nearby-partitions(e;p;q), 
partition: partition(I), 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
iproper: iproper(I), 
interval: Interval, 
rleq: x ≤ y, 
rless: x < y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
length: ||as||, 
int_seg: {i..j-}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
i-length: |I|, 
so_apply: x[s], 
nearby-partition-sum, 
small-reciprocal-real-ext, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
nearby-partition-sum, 
lifting-strict-callbyvalue, 
istype-void, 
strict4-spread, 
small-reciprocal-real-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  iproper(I)
    {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  I.  \mforall{}p:partition(I).
            \mforall{}x:partition-choice(full-partition(I;p)).  \mforall{}alpha:\{a:\mBbbR{}|  r0  <  a\}  .
                \mexists{}e:\{e:\mBbbR{}|  r0  <  e\} 
                  \mforall{}q:partition(I).  \mforall{}y:partition-choice(full-partition(I;q)).
                      (nearby-partitions(e;p;q)
                      {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||p||  +  1.  (|x[i]  -  y[i]|  \mleq{}  e))
                      {}\mRightarrow{}  (|S(f;full-partition(I;q))  -  S(f;full-partition(I;p))|  \mleq{}  alpha))))
Date html generated:
2019_10_30-AM-11_37_12
Last ObjectModification:
2019_01_27-PM-04_38_16
Theory : reals_2
Home
Index