Nuprl Lemma : rcos-pi
rcos(π) = -(r1)
Proof
Definitions occuring in Statement : 
pi: π, 
rcos: rcos(x), 
req: x = y, 
rminus: -(x), 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
all: ∀x:A. B[x], 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
rcos-shift-pi, 
int-to-real_wf, 
rcos_wf, 
radd_wf, 
pi_wf, 
rminus_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
req_wf, 
squash_wf, 
true_wf, 
real_wf, 
rminus-int, 
subtype_rel_self, 
iff_weakening_equal, 
req_functionality, 
req_weakening, 
rminus_functionality, 
rcos0, 
rcos_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
minusEquality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination
Latex:
rcos(\mpi{})  =  -(r1)
Date html generated:
2019_10_30-AM-11_43_45
Last ObjectModification:
2019_06_10-PM-05_27_20
Theory : reals_2
Home
Index