Step
*
2
1
1
of Lemma
rcos-seq-converges-to-half-pi
1. π/2(slower)
= (λn.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1) m) ÷ 4)
∈ (ℕ+ ⟶ ℤ)
2. λk.((exp-ratio(1;3164556962025316455;0;4 * k;1000000000) + 1) + 1)
∈ lim n→∞.rcos-seq(n) = λn.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1) m) ÷ 4
⊢ lim n→∞.rcos-seq(n) = π/2(slower)
BY
{ (Assert ⌜lim n→∞.rcos-seq(n) = λn.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1) m) ÷ 4⌝⋅
THENA (UseWitness ⌜λk.((exp-ratio(1;3164556962025316455;0;4 * k;1000000000) + 1) + 1)⌝⋅ THEN Auto)
) }
1
1. π/2(slower)
= (λn.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1) m) ÷ 4)
∈ (ℕ+ ⟶ ℤ)
2. λk.((exp-ratio(1;3164556962025316455;0;4 * k;1000000000) + 1) + 1)
∈ lim n→∞.rcos-seq(n) = λn.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1) m) ÷ 4
3. lim n→∞.rcos-seq(n) = λn.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1) m) ÷ 4
⊢ lim n→∞.rcos-seq(n) = π/2(slower)
Latex:
Latex:
1. \mpi{}/2(slower)
= (\mlambda{}n.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1) m) \mdiv{} 4)
2. \mlambda{}k.((exp-ratio(1;3164556962025316455;0;4 * k;1000000000) + 1) + 1)
\mmember{} lim n\mrightarrow{}\minfty{}.rcos-seq(n) = \mlambda{}n.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1) m) \mdiv{} 4
\mvdash{} lim n\mrightarrow{}\minfty{}.rcos-seq(n) = \mpi{}/2(slower)
By
Latex:
(Assert \mkleeneopen{}lim n\mrightarrow{}\minfty{}.rcos-seq(n) = \mlambda{}n.eval m = 4 * n in
(rcos-seq(exp-ratio(1;3164556962025316455;0;m;1000000000) + 1)
m) \mdiv{} 4\mkleeneclose{}\mcdot{}
THENA (UseWitness \mkleeneopen{}\mlambda{}k.((exp-ratio(1;3164556962025316455;0;4 * k;1000000000) + 1) + 1)\mkleeneclose{}\mcdot{} THEN Auto)
)
Home
Index