Nuprl Lemma : binary-treeco-ext
binary-treeco() ≡ lbl:Atom × if lbl =a "Leaf" then ℤ
if lbl =a "Node" then left:binary-treeco() × binary-treeco()
else Void
fi
Proof
Definitions occuring in Statement :
binary-treeco: binary-treeco()
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
ext-eq: A ≡ B
,
product: x:A × B[x]
,
int: ℤ
,
token: "$token"
,
atom: Atom
,
void: Void
Definitions unfolded in proof :
binary-treeco: binary-treeco()
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
member: t ∈ T
,
so_apply: x[s]
,
uimplies: b supposing a
,
continuous-monotone: ContinuousMonotone(T.F[T])
,
and: P ∧ Q
,
type-monotone: Monotone(T.F[T])
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
strong-type-continuous: Continuous+(T.F[T])
,
type-continuous: Continuous(T.F[T])
Lemmas referenced :
corec-ext,
ifthenelse_wf,
eq_atom_wf,
subtype_rel_product,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_rel_self,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
subtype_rel_wf,
strong-continuous-depproduct,
continuous-constant,
strong-continuous-product,
continuous-id,
subtype_rel_weakening,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
lambdaEquality,
productEquality,
atomEquality,
instantiate,
hypothesisEquality,
tokenEquality,
hypothesis,
universeEquality,
intEquality,
voidEquality,
independent_isectElimination,
independent_pairFormation,
isect_memberFormation,
introduction,
because_Cache,
lambdaFormation,
unionElimination,
equalityElimination,
productElimination,
dependent_pairFormation,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
dependent_functionElimination,
independent_functionElimination,
voidElimination,
equalityEquality,
axiomEquality,
isect_memberEquality,
cumulativity,
isectEquality,
applyEquality,
functionEquality
Latex:
binary-treeco() \mequiv{} lbl:Atom \mtimes{} if lbl =a "Leaf" then \mBbbZ{}
if lbl =a "Node" then left:binary-treeco() \mtimes{} binary-treeco()
else Void
fi
Date html generated:
2016_05_16-AM-09_05_17
Last ObjectModification:
2015_12_28-PM-06_50_13
Theory : C-semantics
Home
Index