Nuprl Lemma : assert_of_bimplies
∀[p:𝔹]. ∀[q:𝔹 supposing ↑p].  uiff(↑(p ⇒b q);↑q supposing ↑p)
Proof
Definitions occuring in Statement : 
bimplies: p ⇒b q, 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bimplies: p ⇒b q, 
bor: p ∨bq, 
bnot: ¬bb, 
bfalse: ff, 
false: False, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True
Lemmas referenced : 
assert_witness, 
isect_subtype_rel_trivial, 
assert_wf, 
bool_wf, 
subtype_rel_self, 
bimplies_wf, 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
independent_isectElimination, 
hypothesis, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
independent_functionElimination, 
Error :universeIsType, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
Error :isectIsType, 
productElimination, 
independent_pairEquality, 
Error :inhabitedIsType, 
isectEquality
Latex:
\mforall{}[p:\mBbbB{}].  \mforall{}[q:\mBbbB{}  supposing  \muparrow{}p].    uiff(\muparrow{}(p  {}\mRightarrow{}\msubb{}  q);\muparrow{}q  supposing  \muparrow{}p)
Date html generated:
2019_06_20-AM-11_31_37
Last ObjectModification:
2018_09_26-AM-11_24_51
Theory : bool_1
Home
Index