Nuprl Lemma : bimplies_weakening
∀[u,v:𝔹].  ↑(u ⇒b v) supposing u = v
Proof
Definitions occuring in Statement : 
bimplies: p ⇒b q, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
bimplies: p ⇒b q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
bor: p ∨bq, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
true: True, 
prop: ℙ, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
false: False
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
subtype_base_sq, 
bool_subtype_base, 
assert_witness, 
equal-wf-base-T, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
assert_of_bnot, 
bor_wf, 
bnot_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
independent_functionElimination, 
natural_numberEquality, 
baseClosed, 
isect_memberEquality, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
voidElimination, 
axiomEquality
Latex:
\mforall{}[u,v:\mBbbB{}].    \muparrow{}(u  {}\mRightarrow{}\msubb{}  v)  supposing  u  =  v
Date html generated:
2019_06_20-AM-11_31_21
Last ObjectModification:
2018_08_27-PM-03_41_16
Theory : bool_1
Home
Index