Nuprl Lemma : ifthenelse_functionality_wrt_iff
∀b1,b2:𝔹.
  ∀[p1,q1,p2,q2:ℙ].
    (b1 = b2 ⇒ {q1 ⇐⇒ q2} ⇒ {p1 ⇐⇒ p2} ⇒ {if b1 then p1 else q1 fi  ⇐⇒ if b2 then p2 else q2 fi })
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
true: True, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
false: False
Lemmas referenced : 
eqtt_to_assert, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
btrue_wf, 
assert_wf, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
assert_of_bnot, 
ifthenelse_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
cut, 
hypothesisEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
instantiate, 
natural_numberEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
voidElimination, 
cumulativity, 
universeEquality
Latex:
\mforall{}b1,b2:\mBbbB{}.
    \mforall{}[p1,q1,p2,q2:\mBbbP{}].
        (b1  =  b2
        {}\mRightarrow{}  \{q1  \mLeftarrow{}{}\mRightarrow{}  q2\}
        {}\mRightarrow{}  \{p1  \mLeftarrow{}{}\mRightarrow{}  p2\}
        {}\mRightarrow{}  \{if  b1  then  p1  else  q1  fi    \mLeftarrow{}{}\mRightarrow{}  if  b2  then  p2  else  q2  fi  \})
Date html generated:
2017_04_14-AM-07_29_57
Last ObjectModification:
2017_02_27-PM-02_58_38
Theory : bool_1
Home
Index