Nuprl Lemma : ifthenelse_functionality_wrt_uimplies2
∀b1,b2:𝔹.  ∀[p,q1,q2:ℙ].  (b1 = b2 ⇒ {q2 supposing q1} ⇒ {if b1 then p else q1 fi  ⇒ if b2 then p else q2 fi })
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
iff: P ⇐⇒ Q, 
true: True, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
btrue_wf, 
assert_wf, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
assert_of_bnot, 
ifthenelse_wf, 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
cut, 
hypothesisEquality, 
thin, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
independent_pairFormation, 
natural_numberEquality, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
voidElimination, 
universeEquality, 
lambdaEquality
Latex:
\mforall{}b1,b2:\mBbbB{}.
    \mforall{}[p,q1,q2:\mBbbP{}].
        (b1  =  b2  {}\mRightarrow{}  \{q2  supposing  q1\}  {}\mRightarrow{}  \{if  b1  then  p  else  q1  fi    {}\mRightarrow{}  if  b2  then  p  else  q2  fi  \})
Date html generated:
2017_04_14-AM-07_30_00
Last ObjectModification:
2017_02_27-PM-02_58_34
Theory : bool_1
Home
Index