Nuprl Lemma : evalall-int

[x:ℤ]. (evalall(x) x)


Proof




Definitions occuring in Statement :  evalall: evalall(t) uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a evalall: evalall(t) has-value: (a)↓ sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} subtype_rel: A ⊆B or: P ∨ Q not: ¬A false: False outl: outl(x) outr: outr(x)
Lemmas referenced :  subtype_base_sq int_subtype_base has-value-implies-dec-ispair not-btrue-sqeq-bfalse has-value-implies-dec-isinl has-value-implies-dec-isinr
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis sqequalRule callbyvalueReduce callbyvalueInt hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination axiomSqEquality Error :universeIsType,  baseApply closedConclusion baseClosed applyEquality unionElimination isintReduceTrue because_Cache voidElimination

Latex:
\mforall{}[x:\mBbbZ{}].  (evalall(x)  \msim{}  x)



Date html generated: 2019_06_20-AM-11_21_07
Last ObjectModification: 2018_10_15-PM-11_10_08

Theory : call!by!value_1


Home Index