Nuprl Lemma : int_lower_ind

i:ℤ. ∀[E:{...i} ⟶ ℙ{u}]. (E[i]  (∀k:{...i 1}. (E[k 1]  E[k]))  {∀k:{...i}. E[k]})


Proof




Definitions occuring in Statement :  int_lower: {...i} uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q guard: {T} member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_lower: {...i} decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True wellfounded: WellFnd{i}(A;x,y.R[x; y]) gt: i > j sq_type: SQType(T) sq_stable: SqStable(P) squash: T
Lemmas referenced :  add-zero zero-mul add-mul-special not-gt-2 decidable__lt sq_stable__le minus-minus not-equal-2 int_subtype_base subtype_base_sq decidable__int_equal gt_wf int_lower_well_founded le_reflexive le-add-cancel2 subtype_rel_sets le_wf le-add-cancel add_functionality_wrt_le zero-add add-commutes minus-add minus-one-mul-top add-swap minus-one-mul add-associates condition-implies-le not-le-2 false_wf decidable__le subtract_wf int_lower_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality natural_numberEquality hypothesis applyEquality lambdaEquality cumulativity universeEquality sqequalRule functionEquality dependent_set_memberEquality addEquality setElimination rename dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination minusEquality isect_memberEquality voidEquality intEquality because_Cache setEquality equalityTransitivity equalitySymmetry introduction imageMemberEquality baseClosed imageElimination multiplyEquality

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[E:\{...i\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  (E[i]  {}\mRightarrow{}  (\mforall{}k:\{...i  -  1\}.  (E[k  +  1]  {}\mRightarrow{}  E[k]))  {}\mRightarrow{}  \{\mforall{}k:\{...i\}.  E[k]\})



Date html generated: 2016_05_13-PM-03_47_32
Last ObjectModification: 2016_01_14-PM-07_11_34

Theory : call!by!value_2


Home Index