Nuprl Lemma : primrec-wf-nsub

[b:ℕ+]. ∀[P:ℕb ⟶ ℙ]. ∀[init:P[0]]. ∀[s:∀n:ℕ1. (P[n]  P[n 1])]. ∀[n:ℕb].  (primrec(n;init;s) ∈ P[n])


Proof




Definitions occuring in Statement :  primrec: primrec(n;b;c) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + uimplies: supposing a int_seg: {i..j-} and: P ∧ Q less_than: a < b squash: T cand: c∧ B lelt: i ≤ j < k subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m top: Top less_than': less_than'(a;b) true: True sq_stable: SqStable(P)
Lemmas referenced :  primrec-wf-int_seg subtype_rel-equal all_wf int_seg_wf subtract_wf decidable__lt istype-false not-lt-2 less-iff-le condition-implies-le add-associates istype-void minus-add minus-one-mul add-swap minus-one-mul-top add_functionality_wrt_le add-commutes le-add-cancel2 istype-le istype-less_than add-member-int_seg2 decidable__le not-le-2 zero-add add-zero add-member-int_seg1 minus-zero sq_stable__le le-add-cancel nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache setElimination rename hypothesis independent_isectElimination independent_pairFormation imageElimination productElimination hypothesisEquality applyEquality closedConclusion natural_numberEquality sqequalRule Error :lambdaEquality_alt,  functionEquality Error :dependent_set_memberEquality_alt,  dependent_functionElimination unionElimination Error :lambdaFormation_alt,  voidElimination independent_functionElimination addEquality minusEquality Error :isect_memberEquality_alt,  Error :productIsType,  Error :universeIsType,  imageMemberEquality baseClosed axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsType,  universeEquality

Latex:
\mforall{}[b:\mBbbN{}\msupplus{}].  \mforall{}[P:\mBbbN{}b  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[init:P[0]].  \mforall{}[s:\mforall{}n:\mBbbN{}b  -  1.  (P[n]  {}\mRightarrow{}  P[n  +  1])].  \mforall{}[n:\mBbbN{}b].
    (primrec(n;init;s)  \mmember{}  P[n])



Date html generated: 2019_06_20-AM-11_27_37
Last ObjectModification: 2019_01_28-PM-05_24_18

Theory : call!by!value_2


Home Index