Nuprl Lemma : sqeq-copath1

[a,b,n:Top].  m.if (m) < (n 1)  then a[m]  else b[m] ~ λm.if (m 1) < (n)  then a[m]  else b[m])


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top so_apply: x[s] less: if (a) < (b)  then c  else d lambda: λx.A[x] subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q has-value: (a)↓ le: A ≤ B subtype_rel: A ⊆B assert: b ifthenelse: if then else fi  bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff prop: false: False not: ¬A squash: T true: True top: Top less_than': less_than'(a;b) less_than: a < b uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] subtract: m uimplies: supposing a is-exception: is-exception(t)
Lemmas referenced :  top_wf is-exception_wf has-value_wf_base minus-minus le-add-cancel zero-add add_functionality_wrt_le add-commutes minus-add less-iff-le minus-one-mul-top add-swap minus-one-mul base_wf add-associates condition-implies-le not-lt-2 assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert less_than_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf int-value-type value-type-has-value exception-not-bottom bottom_diverge exception-not-value_1 add-is-int-iff subtract_wf
Rules used in proof :  because_Cache isect_memberEquality axiomSqEquality sqleReflexivity hypothesis hypothesisEquality baseClosed closedConclusion baseApply isectElimination sqequalHypSubstitution extract_by_obid divergentSqle thin sqleRule sqequalSqle sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination callbyvalueLess minusEquality lambdaEquality applyEquality cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation addEquality independent_functionElimination imageElimination imageMemberEquality natural_numberEquality voidEquality voidElimination independent_pairFormation lessCases equalityElimination unionElimination lambdaFormation callbyvalueAdd equalitySymmetry equalityTransitivity independent_isectElimination intEquality exceptionSqequal axiomSqleEquality lessExceptionCases exceptionLess addExceptionCases

Latex:
\mforall{}[a,b,n:Top].
    (\mlambda{}m.if  (m)  <  (n  -  1)    then  a[m]    else  b[m]  \msim{}  \mlambda{}m.if  (m  +  1)  <  (n)    then  a[m]    else  b[m])



Date html generated: 2019_06_20-PM-01_11_52
Last ObjectModification: 2019_01_02-PM-01_35_32

Theory : co-recursion-2


Home Index