Step * 1 1 1 1 1 1 1 of Lemma coW-equiv-implies

.....subterm..... T:t
2:n
1. : 𝕌'
2. A ⟶ Type
3. coW(A;a.B[a])
4. w' coW(A;a.B[a])
5. coW(A;a.B[a])
6. coW-dom(a.B[a];w)
7. coW-equiv(a.B[a];z;coW-item(w;b))
8. q1 copath(a.B[a];w)
9. q2 copath(a.B[a];w')
10. win2(coW-game(a.B[a];w;w')@<q1, q2>)
11. copath-cons(b;()) q1 ∈ copath(a.B[a];w)
12. copath-length(q2) 1 ∈ ℤ
13. sg-normalize(coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2)))) ≅
    coW-game(a.B[a];w;w')@<copath-cons(b;()), copath-cons(copath-hd(q2);())>
14. copath-cons(copath-hd(q2);copath-tl(q2)) q2 ∈ copath(a.B[a];w')
⊢ copath-tl(q2) () ∈ copath(a.B[a];coW-item(w';copath-hd(q2)))
BY
((MoveToConcl (-3) THEN All Thin)
   THEN -1
   THEN RepUR ``copath-length copath-tl copath copath-nil copath-hd`` 0
   THEN Auto
   THEN Eliminate ⌜n⌝⋅
   THEN RepeatFor ((Unfold `coPath` -2 THEN Reduce -2))
   THEN -2
   THEN Reduce 0
   THEN EqCDA
   THEN Unfold `coPath` 0
   THEN Reduce 0
   THEN Auto) }


Latex:


Latex:
.....subterm.....  T:t
2:n
1.  A  :  \mBbbU{}'
2.  B  :  A  {}\mrightarrow{}  Type
3.  w  :  coW(A;a.B[a])
4.  w'  :  coW(A;a.B[a])
5.  z  :  coW(A;a.B[a])
6.  b  :  coW-dom(a.B[a];w)
7.  coW-equiv(a.B[a];z;coW-item(w;b))
8.  q1  :  copath(a.B[a];w)
9.  q2  :  copath(a.B[a];w')
10.  win2(coW-game(a.B[a];w;w')@<q1,  q2>)
11.  copath-cons(b;())  =  q1
12.  copath-length(q2)  =  1
13.  sg-normalize(coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2))))  \mcong{}
        coW-game(a.B[a];w;w')@<copath-cons(b;()),  copath-cons(copath-hd(q2);())>
14.  copath-cons(copath-hd(q2);copath-tl(q2))  =  q2
\mvdash{}  copath-tl(q2)  =  ()


By


Latex:
((MoveToConcl  (-3)  THEN  All  Thin)
  THEN  D  -1
  THEN  RepUR  ``copath-length  copath-tl  copath  copath-nil  copath-hd``  0
  THEN  Auto
  THEN  Eliminate  \mkleeneopen{}n\mkleeneclose{}\mcdot{}
  THEN  RepeatFor  2  ((Unfold  `coPath`  -2  THEN  Reduce  -2))
  THEN  D  -2
  THEN  Reduce  0
  THEN  EqCDA
  THEN  Unfold  `coPath`  0
  THEN  Reduce  0
  THEN  Auto)




Home Index