Nuprl Lemma : copath-extend_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)]. ∀[t:coW-dom(a.B[a];copath-at(w;p))].
  (copath-extend(p;t) ∈ copath(a.B[a];w))


Proof




Definitions occuring in Statement :  copath-extend: copath-extend(q;t) copath-at: copath-at(w;p) copath: copath(a.B[a];w) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B subtract: m squash: T sq_stable: SqStable(P) uimplies: supposing a uiff: uiff(P;Q) prop: false: False implies:  Q rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat: copath-at: copath-at(w;p) copath: copath(a.B[a];w) copath-extend: copath-extend(q;t) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf copath_wf copath-at_wf coW-dom_wf coPath_wf coPath-extend_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le
Rules used in proof :  universeEquality functionEquality cumulativity instantiate equalitySymmetry equalityTransitivity axiomEquality minusEquality intEquality voidEquality isect_memberEquality lambdaEquality applyEquality imageElimination baseClosed imageMemberEquality isectElimination independent_isectElimination independent_functionElimination voidElimination lambdaFormation independent_pairFormation unionElimination hypothesisEquality dependent_functionElimination extract_by_obid natural_numberEquality hypothesis because_Cache rename setElimination addEquality dependent_set_memberEquality dependent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].
\mforall{}[t:coW-dom(a.B[a];copath-at(w;p))].
    (copath-extend(p;t)  \mmember{}  copath(a.B[a];w))



Date html generated: 2018_07_25-PM-01_39_12
Last ObjectModification: 2018_07_18-PM-07_49_38

Theory : co-recursion


Home Index