Nuprl Lemma : coPath-extend_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[n:ℕ]. ∀[w:coW(A;a.B[a])]. ∀[p:coPath(a.B[a];w;n)]. ∀[t:coW-dom(a.B[a];coPath-at(n;w;p))].
  (coPath-extend(n;p;t) ∈ coPath(a.B[a];w;n 1))


Proof




Definitions occuring in Statement :  coPath-extend: coPath-extend(n;p;t) coPath-at: coPath-at(n;w;p) coPath: coPath(a.B[a];w;n) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) exists: x:A. B[x] it: unit: Unit bool: 𝔹 true: True top: Top uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B subtype_rel: A ⊆B all: x:A. B[x] bfalse: ff btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) coPath-at: coPath-at(n;w;p) coPath: coPath(a.B[a];w;n) coPath-extend: coPath-extend(n;p;t) so_apply: x[s] so_lambda: λ2x.t[x] prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity uiff_transitivity zero-mul add-mul-special not-equal-2 not-le-2 coPath_subtype neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert not_wf bnot_wf le_weakening assert_wf int_subtype_base equal-wf-base bool_wf eq_int_wf nat_wf le_weakening2 le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 subtract_wf decidable__le le_wf false_wf top_wf coW-item_wf it_wf coW_wf coPath_wf coPath-at_wf coW-dom_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  impliesFunctionality productEquality multiplyEquality promote_hyp dependent_pairFormation equalityElimination baseClosed closedConclusion baseApply universeEquality functionEquality minusEquality intEquality voidEquality addEquality productElimination unionElimination independent_pairFormation dependent_set_memberEquality dependent_pairEquality instantiate because_Cache functionExtensionality applyEquality cumulativity equalitySymmetry equalityTransitivity axiomEquality isect_memberEquality dependent_functionElimination lambdaEquality voidElimination independent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:coPath(a.B[a];w;n)].
\mforall{}[t:coW-dom(a.B[a];coPath-at(n;w;p))].
    (coPath-extend(n;p;t)  \mmember{}  coPath(a.B[a];w;n  +  1))



Date html generated: 2018_07_25-PM-01_38_42
Last ObjectModification: 2018_07_18-PM-07_07_06

Theory : co-recursion


Home Index