Nuprl Lemma : pcw-pp-barred_wf0

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
[pp:n:ℕ × (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))].
  (Barred(pp) ∈ ℙ)


Proof




Definitions occuring in Statement :  pcw-pp-barred: Barred(pp) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcw-pp-barred: Barred(pp) prop: and: P ∧ Q nat: int_seg: {i..j-} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 ext-family: F ≡ G ext-eq: A ≡ B pi1: fst(t)
Lemmas referenced :  less_than_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt lelt_wf pcw-step_wf param-co-W-ext assert_wf isr_wf unit_wf2 equal_wf nat_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productElimination thin productEquality extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality setElimination rename because_Cache hypothesis applyEquality dependent_set_memberEquality independent_pairFormation dependent_functionElimination hypothesisEquality unionElimination lambdaFormation voidElimination independent_functionElimination independent_isectElimination addEquality minusEquality cumulativity lambdaEquality functionExtensionality hypothesis_subsumption equalityTransitivity equalitySymmetry axiomEquality functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[pp:n:\mBbbN{}  \mtimes{}  (\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))].
    (Barred(pp)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_14-AM-07_42_04
Last ObjectModification: 2017_02_27-PM-03_13_52

Theory : co-recursion


Home Index