Nuprl Lemma : MP+truncated-KS-imply-truncated-LEM

(∀P:ℕ ⟶ ℙ((∀n:ℕDec(P[n]))  (∀n:ℕP[n])))  (∃n:ℕP[n])))
 (∀A:ℙ. ⇃(∃a:ℕ ⟶ ℕ(A ⇐⇒ ∃n:ℕ((a n) 1 ∈ ℤ))))
 (∀P:ℙ. ⇃(P ∨ P)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] nat: decidable: Dec(P) prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) not: ¬A guard: {T} nat: or: P ∨ Q subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] and: P ∧ Q rev_implies:  Q iff: ⇐⇒ Q exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T all: x:A. B[x] implies:  Q
Lemmas referenced :  not_over_exists decidable__int_equal not-not-excluded-middle-quot-true implies-quotient-true2 or_wf not_wf decidable_wf equiv_rel_true true_wf equal-wf-T-base iff_wf nat_wf exists_wf quotient_wf all_wf
Rules used in proof :  natural_numberEquality promote_hyp impliesFunctionality productElimination independent_functionElimination rename setElimination dependent_functionElimination cumulativity baseClosed functionExtensionality applyEquality intEquality independent_isectElimination hypothesisEquality because_Cache hypothesis functionEquality lambdaEquality sqequalRule isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate thin cut universeEquality lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  Dec(P[n]))  {}\mRightarrow{}  (\mneg{}(\mforall{}n:\mBbbN{}.  (\mneg{}P[n])))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  P[n])))
{}\mRightarrow{}  (\mforall{}A:\mBbbP{}.  \00D9(\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (A  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((a  n)  =  1))))
{}\mRightarrow{}  (\mforall{}P:\mBbbP{}.  \00D9(P  \mvee{}  (\mneg{}P)))



Date html generated: 2017_04_20-AM-07_36_09
Last ObjectModification: 2017_04_11-AM-05_18_24

Theory : continuity


Home Index