Nuprl Lemma : MP+truncated-KS-imply-truncated-LEM
(∀P:ℕ ⟶ ℙ. ((∀n:ℕ. Dec(P[n])) 
⇒ (¬(∀n:ℕ. (¬P[n]))) 
⇒ (∃n:ℕ. P[n])))
⇒ (∀A:ℙ. ⇃(∃a:ℕ ⟶ ℕ. (A 
⇐⇒ ∃n:ℕ. ((a n) = 1 ∈ ℤ))))
⇒ (∀P:ℙ. ⇃(P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
not: ¬A
, 
guard: {T}
, 
nat: ℕ
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
not_over_exists, 
decidable__int_equal, 
not-not-excluded-middle-quot-true, 
implies-quotient-true2, 
or_wf, 
not_wf, 
decidable_wf, 
equiv_rel_true, 
true_wf, 
equal-wf-T-base, 
iff_wf, 
nat_wf, 
exists_wf, 
quotient_wf, 
all_wf
Rules used in proof : 
natural_numberEquality, 
promote_hyp, 
impliesFunctionality, 
productElimination, 
independent_functionElimination, 
rename, 
setElimination, 
dependent_functionElimination, 
cumulativity, 
baseClosed, 
functionExtensionality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
universeEquality, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  Dec(P[n]))  {}\mRightarrow{}  (\mneg{}(\mforall{}n:\mBbbN{}.  (\mneg{}P[n])))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  P[n])))
{}\mRightarrow{}  (\mforall{}A:\mBbbP{}.  \00D9(\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (A  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((a  n)  =  1))))
{}\mRightarrow{}  (\mforall{}P:\mBbbP{}.  \00D9(P  \mvee{}  (\mneg{}P)))
Date html generated:
2017_04_20-AM-07_36_09
Last ObjectModification:
2017_04_11-AM-05_18_24
Theory : continuity
Home
Index