Nuprl Lemma : d-CCC-surjection

[A,B:Type].  ((∃f:A ⟶ B. Surj(A;B;f))  dCCC(A)  dCCC(B))


Proof




Definitions occuring in Statement :  contra-dcc: dCCC(T) surject: Surj(A;B;f) uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) guard: {T} uimplies: supposing a surject: Surj(A;B;f) prop: compose: g member: t ∈ T all: x:A. B[x] contra-dcc: dCCC(T) exists: x:A. B[x] implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  assert_functionality_wrt_uiff assert_witness istype-universe surject_wf contra-dcc_wf bool_wf istype-assert nat_wf compose_wf istype-nat
Rules used in proof :  equalitySymmetry independent_isectElimination Error :dependent_pairFormation_alt,  universeEquality instantiate Error :inhabitedIsType,  Error :productIsType,  because_Cache Error :functionIsType,  isectElimination independent_functionElimination sqequalRule hypothesis extract_by_obid introduction cut Error :universeIsType,  hypothesisEquality applyEquality Error :lambdaEquality_alt,  dependent_functionElimination thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A,B:Type].    ((\mexists{}f:A  {}\mrightarrow{}  B.  Surj(A;B;f))  {}\mRightarrow{}  dCCC(A)  {}\mRightarrow{}  dCCC(B))



Date html generated: 2019_06_20-PM-03_00_51
Last ObjectModification: 2019_06_12-PM-08_41_45

Theory : continuity


Home Index