Nuprl Lemma : d-CCC-surjection
∀[A,B:Type].  ((∃f:A ⟶ B. Surj(A;B;f)) 
⇒ dCCC(A) 
⇒ dCCC(B))
Proof
Definitions occuring in Statement : 
contra-dcc: dCCC(T)
, 
surject: Surj(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
uimplies: b supposing a
, 
surject: Surj(A;B;f)
, 
prop: ℙ
, 
compose: f o g
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
contra-dcc: dCCC(T)
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
assert_functionality_wrt_uiff, 
assert_witness, 
istype-universe, 
surject_wf, 
contra-dcc_wf, 
bool_wf, 
istype-assert, 
nat_wf, 
compose_wf, 
istype-nat
Rules used in proof : 
equalitySymmetry, 
independent_isectElimination, 
Error :dependent_pairFormation_alt, 
universeEquality, 
instantiate, 
Error :inhabitedIsType, 
Error :productIsType, 
because_Cache, 
Error :functionIsType, 
isectElimination, 
independent_functionElimination, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
Error :universeIsType, 
hypothesisEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
productElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A,B:Type].    ((\mexists{}f:A  {}\mrightarrow{}  B.  Surj(A;B;f))  {}\mRightarrow{}  dCCC(A)  {}\mRightarrow{}  dCCC(B))
Date html generated:
2019_06_20-PM-03_00_51
Last ObjectModification:
2019_06_12-PM-08_41_45
Theory : continuity
Home
Index